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Abstract: Determining the number of components is a crucial is-
sue in a mixture model. A moment-based criterion is considered to
estimate the number of components arising from a normal mixture
model. This criterion is derived from an omnibus statistic involving
the skewness and kurtosis of each component. The proposed cri-
terion additionally provides a measurement for the model fit in an
absolute sense. The performances of our criterion are satisfactory
compared with other classical criteria through Monte-Carlo experi-
ments.
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1. Introduction

Nowadays there is a widespread empirical evidence that
finite mixture models have been powerful tools for analyz-
ing data where observations originate from various com-
ponents. The analyses of such finite mixture models are
commonly carried out by using the maximum likelihood
estimation with the known number of mixture components
[1,2]. Thisnaturally leads to the development of the selec-
tion criterion for determining the number of components
in amixture model.

A selecting criterion commonly deals with the trade-off
between the quality of the model and the complexity of
the model. Following this rule, there are various selection
criteria to determine the number of componentsin a mix-
turemodel in literature. The Akaike'sinformation criterion
(AIC) [3] and the Bayesian information criterion (BIC) [4]
are the most widely used criteria among them. In addition,
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numbers of studies provide targeted methods in accessing
the number of components for a mixture model. These re-
searchesinvolve methodsbased on likelihood ratio test [5—
9], Bayesian analysis [10—12], entropy criterion [13,14],
homogeneity test [15,16] and graphical technique [17].

We provide a novel criterion to determine the appropri-
ate number of componentsfor amixture model based onits
moments. This criterion is derived from an omnibus statis-
ticinvolving the skewness and kurtosis of each component.
Our motivation for this study is twofold.

Firstly, our work is inspired by the ssimplicity of qua-
lity tests for normality. On the one hand, since mixtures
of the normal distribution consist of more than one normal
components, it is natural to wonder whether each normal
component in a mixture model enjoys the similar statistic
features with the normal distribution. On the other hand,
the moment-based methods are widely used in testing nor-
mality [18—20].

In this sense, the criterion based on the moments is
likely to be a neglected area of research in the mixture
model. Based on our empirical results, the former four mo-
ments of each component, as defined in a Gaussian mix-
ture model, share similar statistical characters with that of
anormal distribution. Therefore, we find a supportive evi-
dencefor the feasibility of using the moment-based statis-
tics to access the quality of our model.

Secondly, except for its comprehensibility and simplici-
ty of calculation, our criterion additionally provides eva-
[uation for the model quality in an absolute sense. We par-
ticularly compare our criterion with the AIC, BIC and nor-
malized entropy criterion (NEC) which enjoy the compu-
tational convenience as well. It should be noticed that the
AIC and BIC both provide evaluations of the modelsin a
relative sense of testing its quality, which means that if all
the candidate modelsfit poorly, these criteriawill not give
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any warning of that. The work of Celeux and Soromenho
[13] has approached thisissuein apractical way. However,
researchers have cast doubt that their procedure has shown
a disappointing behavior [21]. In addition, compared with
other criteria such as AIC, BIC, it suffers from the limita-
tion that it cannot decide between one and more than one
clusters[22].

Compared with the AIC and BIC, our criterion provides
the testing of model quality in an absolute sense while
those criteriaare not devoted to measuring the performance
of the mixture model. Besides, it provides more targeted
criterion for the normal mixture model. Compared with the
NEC, our criterion gets a better performance and is of no
doubt with the decision between one and more than one
clusters. The performances of our criterion are satisfac-
tory compared with these classical criteriathrough Monte-
Carlo experiments.

Therest of this paper is organized as follows. Section 2
introduces the classical criteria used for the model selec-
tion. Section 3 gives a heuristic discussion of our selection
criterion, followed in Section 4, simulation procedures are
designed to evaluate the performance of the criterion. Sec-
tion 5 offers a summary.

2. Criteriafor the number of componentsin
a normal mixture model

A normal mixture model is a weighted sum of K compo-
nent normal densities as given by

K
P(@N) = mg(@|p;, Z;) D
j=1

where x isad-dimensional vector, 7; (j =1,2,...,K) is

the mixture weights, and g(x|u;, X';) is the normal den-

Sity

9(®|pj, X5) =
(27) =2 25|72 expl— (2 — )T ;@ - )] ()

with the mean vector p; and covariance matrix X' ;. The
K

mixture weights satisfy the constraint that ij = 1.
j=1

The mixture model assumes that each observed data point

x; has a corresponding unobserved data point, or latent

varisble 7/ (1 < i < n,1 < j < K), specifying the

mixture component that each data point belongs to. Let

x1,T9,. .., 2, denotearandom training set of independent

and identically distributed samples taken from the mixture

distributionin (2). Thelog-likelihood function can be writ-

tenas

n K
LK) =Y 1n (Z Tjg(wIAj)) ®

where A; = {7, pn;, ¥;} (j =1,2,...,K). L(K) isre-
garded to contain information about model fit. Meanwhile,
L(K) is an increasing function of K in genera while a
larger K indicates more model complexity. Variouscriteria
to be minimized have been proposed to measure amodel’s
suitability by balancing model fit and model complexity.

The Akaike information criterion [3], considered in [23]
in the mixture context, takes the form

AIC(K) = 2 L(K) + 2N(K) )

where N (K) isthe number of the unknown parameters.

The Bayesian information criterion defined by Schwarz
[4] approximates the exact Bayes solution to the problem
of selecting the appropriate model and is defined as

BIC(K) = —2In L(K) 4+ In(n)N(K) (5)

Closely related to the AIC, the BIC or Schwarz criterion
is partly based on the likelihood function. When determin-
ing the number of mixture components, the AIC tends to
overestimate and the BIC tends to underestimate the num-
ber of components K [22,24,25]. These criteria (especially
the AIC) have been widely adopted in model selection, see
for examples the works of Yamaoka et a. [26], Anderson
et a. [27] and Posada and Crandall [28]. However, neither
AIC nor BIC provides a test in an absolute sense of test-
ing the model quality, which meansthat if all the candidate
models fit poorly, these criteria will not give any warning
of that.

The normalized entropy criterion proposed by Celeux
and Soromenho [13] is derived from arelation linking the
likelihood and the classification likelihood of a mixture
and is expressed as

_ E(K)
)= C(K)+ E(K)-C(1)

NEC(K (6)
This is a transform form of the entropy crite-
rion of Celeux and Soromenho [13] where E(K) =

K n K n
ZZTU ln(Tij) and C(K) = ZZTjg((L’i;Aj).
j=1 =1

=1 i=1
]Cel eux and Soromenho [13] concentrated on the view of
the cluster analysis to estimate the number of components
arising from anormal mixture model. Under their assump-
tions, the probability of each sample point to which com-
ponent may belong should be one or zero in the best cases.

3. A moment-based criterion

We propose a criterion which aims to measure the ability
of the model in separating mixtures of normals. It empha-
sizes the model with its goodness of fit in general, as well
asits partial benefits. According to Akaike, the AIC crite-
rion suggests the use of likelihood as a measure of fit of a
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model. However, this measure can only make acomparison
inthe goodness of fit rather than an absol ute judgment. The
measure for partial benefits in the proposed criterion can
make up for this advantage. Under the assumption of the
accumulated normal density, each component is assumed
to be normal. Asfor anormal distribution, each eigenvalue
can be described by its mean and variance. It is unneces-
sary to consider its higher moments since that skewness
and kurtosis are both equal to zero for the normal distri-
bution. For this reason, the skewness and kurtosis of each
component are to be penalized in our criterion.

3.1 Skewnessand kurtosis of each component in
amixture of normals

3.1.1 Measuring the skewness and kurtosis of
each component

In the probability theory and statistics, skewness and kur-
tosis both describe the shape of a probability distribution
of areal-valued random variable. Skewness is a descriptor
of the asymmetry while the kurtosis presents the “ peaked-
ness’ [29]. There are different ways of quantifying them
for a theoretical distribution and corresponding ways of
estimating them from a sample. One common measure of
skewness and kurtosis, originating with Karl Pearson [30],
isbased on a scaled version of the third and fourth moment
of the data respectively. Pearson’s moment coefficients of
skewness and excess kurtosis are used to provide a com-
parison of the shape of a given distribution to that of the
normal distribution. It has been argued that there was no
emphasis in Pearson’s original work on kurtosis as mea-
suring (in part) tail heaviness which seems to be its more
frequent contemporary usage. For this reason, an adjusted
version of Pearson’s kurtosis is commonly used instead.
According to Pearson’s moment coefficients of skewness
and excess, the skewness of arandom variable z isthethird
standardized moment, denoted by /b, and defined as

Vi = Bl —w?) EKIIvT' @

(El(x —u)?])3/?

Excess kurtosis is equal to the fourth moment around the
mean divided by the square of the variance of the probabil-
ity distribution minus 3,

Bl - _, _

"= El@—w)? -

13 (9

This subsection is designed to measure the skewness
and kurtosis Izor each normal in the mixture model. Con-

straint that ij = 1. Coupled with the termsin (7) and
j=1

(8), the coefficient of skewnessfor the kth normal distribu-
tionis computed as

\/Eik) _E (m—u)gl _

In order to transform the term inside the integral into the
production of P(x) and some function F'(z|k), the term
g(x|puk, or) istransformed into form

p(klz)
Th

9(x|p, on) = g(x|k) = P(z).  (10)

By the Bayes' rule, and (9) turnsto

Vi = ro (m - ”’“)3 PR pvas. @)

Ok Tk
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is the expectation of function ———= under

Ok Tk
the probability distribution P(x). The probability that a
given point x; belongs to the kth component is signed as
T;k- Then, this expectation [31,32] can be approximated as

Vi Ly (T ST (12)
~ .

g
i=1 k

In asimilar way to the measure of the skewness \/55’“ ,
the coefficient of the kurtosis bék) can be approximated as

n 4
1 Ti —UE\ Tk
b~ =N () s 13
2 n O Tk ( )

i=1

3.1.2 Asymmetric distributions of \/55’” and b3

Pearson, over a long period, has studied the distribution
of the sample skewness and kurtosis statistics v/b; and b,
with samples from a normal population, for example see
[33]. Since then, v/b; and by have been used to test the
null hypothesisthat the distribution sampled is the normal
[18,19,34]. D’ Agostino and Pearson [18] have suggested
an omnibus statistic in the form of X2 = X?(vb;) +
X3 (by), where X1 (v/b1) and X (b,) follow standardized
normal distribution approximately, and the statistic X 2 is
distributed as 2(2). X, (v/b1) and X5 (b2) can be written
as

X1(Vbr) = Vb /\/6/n,  Xa(ba) = (b2 —3)/+/24/n

while 6/n and 24 /n are the asymptotic variances of /b,
and b [19]. A point worth noted is that the statistic X 2 =
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(Vb1/4/6/n)? + ((ba — 3)/+/24/n)? requires|arge sam-
plesto be distributed as a x 2 distribution.

Since a norma mixture distribution consists of more
than one norma component, it is natura to wonder

whether \/ng) and bgk) in the kth component enjoy the
similar statistic features with that of v/»; and b». To an-
swer this question, we generate Experiment 1 to assess the

behavior of \/E§k) and bgk) inamixture of two normal pop-
ulations and compare with that of v/b; and b, in anormal
distribution.

Experiment  In this experiment, 100 000 random
samples are drawn from the distributions N(2,22) and
0.3N(2,22) + 0.7N(4,2%) respectively. We carry out
10 000 replications and estimate the moments of /by, ba,
Vo %) and the related variables.

Table 1 Statistics of v/, ba, VB, b and related variables
with sample sizen = 100 000

Mixture of two normals

Statistics Normal (= [0.3,0.7))
Vb, bo \/Eﬁl) bgl) \/552) b(22)
Mean 00000 30001 00002 30002 00002 29999
Sd. 00077 00154 00149 00196 00110 00144

Jarque Bera 0.0000 0.0000 0.0000 0.0000 0.0000 0.0630
Std. of X (-) 09997 09931 1.9243 1.2630 1.4259 0.9302

Note: The probability of rejecting the normality in Table 1 indicates
that al the variables are considered normal statistically.

Asseenin Table 1, it is not surprising that the distribu-
tions of X, (v/b1) and Xo(b,) are approximated N (0,12)
in the results of Monte Carlo simulations. Similarly, the
results of Monte Carlo simulations on ﬂﬁ’“) and bgk) in-
dicate that the distributions of skewness and kurtosis in
the mixture of normal condition are approximated nor-
mal. However, the distributions of X4 (\/55’“)) or Xg(bék))
do not approximate to a standard normal distribution as
X (\/51) or X5 (by) does. Therefore, the similar transform
functions cannot be used to generate the statistics for test-
ing the local model fit. In this paper, we use the original

forms of \/55’“ and bgk) which are approximated normal
with limited means and variances.

3.2 Theproposed criterion

Similar to the NEC, our criterion not only includes the
model selecting function, but also rewards the model fit.
The proposed criterion is derived from a statistic involv-
ing the skewness and kurtosis of each component. Our
moment-based criterion (NMC) takes the form
k
NMC(K) = max{|Ve | 0} (14
where \/55’“) and bgk) correspond to the measure of skew-
ness and kurtosis of each normal component respectively.

For a well-fitting normal mixture model, the skewness

(\/E§k)) and kurtosis (bé’“)) of each normal component are
considered for the advantage that skewness and kurtosis
are standards in test for normality and their value should
be approximated to zero. On the contrary, if for some com-
ponent j the distribution of the samples in its vicinity is

non-normal, the associated value of \/55” or kurtosis bgj )

would deviate from zero to a positive or negative number.

Vlassis and Likas [35] have proposed atotal kurtosis mea-
K

sure K = Z Tj|b§j)\ to value how large this deviation
j=1

is for the Wh]ole mixture. They also underlined the appli-
cation of K1 as ameasure of how well a norma mixture
fits the data. It should reinforce the point that, considering
the weighted sum of |b§j )\ may ignore the information of
kurtosis corresponding to a light weight 7;. As an exam-
ple, the maximum kurtosis and the total kurtosis K 1 with
different component number K are computed based on the
methodin [35]. Ascan beseeninFig. 1, the value of theto-
tal kurtosis K1 (which correspondsto thered line) reflects
that the goodness of fit is getting better while the value of
maximum kurtosis indicates a worse mode! fit.
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—: Maximum kurtosis; : Total kurtosis.

Fig.1 Themaximum kurtosis and the total kurtosis

In this paper, the maximum absolute value of skewness
and kurtosis is used as a substitute indicator for the to-
tal value. The values of \/55’” and bék) as defined in (12)
and (13) are the moment information of each component
of the mixture model which should be both equal to zero
under the normal assumption. In other words, for a normal

mixture model the smaller the absolute value of \/55’“) and
bék) the better. Clearly, the upper bound of both \/55’“ and
bék) can be described by their maximum absolute values as

Max{|\/5§k) |} and Max{\bék) |}. For the further step, the
measure of the local goodness of the fit is defined as the

maximum value of Max{]| \/Egk) I} and Max{ 5%}
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As previously mentioned,
k
NMC(K) = max{[V5."|, [55]}

is proposed as a criterion to be minimized for. This cri-
terion NMC(K) is chosen for two reasons. Firstly, while
the AIC can tell nothing about the quality of the model in
an absolute sense, the moment-based criterion reflects the
behavior of the model. Secondly, NMC(K’) is not amono-
tone function of K. Given a set of candidate models for
the data, the preferred model is the one with the minimum
NMC(K) value.

4. Numerical experiments

Briefly, the smulation procedure involves three sub-
routines: with the first sub-routine generating data sets
from the normal mixture models, whereas the second sub-
routine estimates the parameters of each competing model
using the expectation maximization (EM) algorithm and
completesthe sel ection procedureand the third sub-routine
evaluatesthe performance of the criterion. In the procedure
of the parameter estimation, we run 10 times the EM algo-
rithm which starts with random initial position with differ-
ent values of K and select the solution with the maximum
likelihood.

In order to illustrate the performances of the NMC in
the problem of determining the number of components, the
practical behavior of the NM C are compared with the well-
known criteria AIC, AlCc, BIC, NEC by Monte-Carlo ex-
periments. AlCc is an AIC with a greater penalty for extra
parameters. Burnham and Anderson strongly recommend
using Al Cc, rather than AIC [36], if n issmall or N(K) is
large. The expressions for the model selection criteriaare

AIC(K) = —2In L(K) + 2N (K)
2N(K)(N(K)+1)
(n—=N(K)-1)
BIC(K) = —-2InL(K) 4+ N(K)In(n)
E(K)

(C(K) + E(K) - C(1))

NMC(K) = max{|V5." |, [}
where N (K) is the number of the unknown parameters.
When these criteria are applied, the model producing the
lowest value is chosen. For the NEC, the model NEC(1)

will not be considered since there remains controversy
about this case.

AICc(K) = AIC(K) +

NEC(K) =

4.1 Experiment conditions

(i) In this experiment, we take the same simulated data
sets as [13]. Sample sizesn = 50, 100, 200, 300 are con-
sidered. Thefirst data set is atwo-component normal mix-
ture distribution with parameters 11 = 0, u2 = 2 and stan-
dard deviations 01 = o, = 1 and proportions; = 75 =

0.5. The second one is a two-component normal mixture
with proportions 71 = 0.7, withmeans u; = 0, uo = 2
and standard deviations oy, = o2 = 1. The third oneisa
three-component normal mixture with equal proportions,
with means pi1 = 0, pue = 2, us = 4 and standard devia-
tionSc71 =09 =03 =1.

(if) The main task of Experiment 2 is to compute the
probability of each criterionin correctly estimating the true
number of components. Note that this probability p takesa
value range from zero to one inclusively, with p = 0 im-
plying that the criterion chooses none of the correct model
and p = 1 presents completely excellent selection abil-
ity of the criterion. In this experiment, series of simulated
data are generated. The first 100 series of data are two-
component normal mixture distributions with parameters
u1 =0+ 0.01¢, uz = 2+ 0.01¢ wheret = 1,2,...,100
and standard deviations o3 = o2 = 1 and proportions
71 = 7o = 0.5. The second 100 series of data are two-
component normal mixture with proportions 71 = 0.7,
with means 1 = 0 + 0.01¢, us = 2 + 0.01¢ and stan-
dard deviations o7 = o9 = 1. The third one is a three-
component normal mixture with egual proportions, with
means p; = 0 + 0.01¢, 2 = 2+ 0.01¢, us = 4 + 0.01¢
and standard deviationsoy = 02 = 03 = 1. Sample sizes
are settled with n = 50, 100, 150, 200, 300.

4.2 Simulation results

Tables 2—4 show some details about the fitting results of
the competing models. The maximum number of compo-
nents is limited to be five, which means there are five
competing models in total. Columns 2 and 3 display the
maximum absol ute value of skewness and kurtosis for the
data pointsin each component from which the goodness of
fit for each component can be investigated. The compara-
tive performance of the five criteriain selecting the correct
model is illustrated in columns 5 to 9. It is of interest to
investigate the situation when the value of K is overes-
timated or underestimated. We will refer to the situation
whereby a criterion selects a smaller number of compo-
nents than the true ones as underestimate, whereas over-
estimate would mean the selection of a larger number of
components than the true ones. As seen in Tables 2—4,
the NEC presents a dlight tendency to overestimate the
number of normal components while AIC/AICc and BIC
trend to underestimate the number of components. As for
the moment-based criterion, there is no obvious regular-
ity to be overestimate or underestimate. Taken together,
the moment-based criterion has the most satisfactory be-
havior in those experiments. Compared with the AIC, the
NMC seems to heavily penalize the local goodness of fit
of all the components in the mixture model. For instance,
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as exhibited in Table 2, the skewness and kurtosis play es-
pecially distinct roles in the selecting procedure since the
model reaches the best local model fit when the number of
componentsis 2.

Table 2 Sample 1 with data generated from 0.5IN(0,12) +
0.5N(2,12)

Selection criteria
AlC AlCc BIC NEC NMC
192.33 19259 196.15 0.00 0.91
193.08 194.45 202.64 152 041
199.08 202.60 214.38 1.10 0.44
0.25 0.44 9153 205.06 212.00 226.09 1.07 0.44
1.37 1.13 89.71 207.42 21942 234.18 NaN 1.37
0.11 0.86 179.72 36343 36356 368.64 0.00 0.86
0.58 0.14 17556 361.12 361.76 374.15 1.33 0.58
0.99 0.69 174.94 365.88 367.46 386.72 1.33 0.99
1.00 0.66 174.97 371.95 37495 400.60 1.09 1.00
1.08 0.78 174.98 377.95 38290 41443 1.06 1.08
0.00 0.59 358.88 721.75 721.81 72835 0.00 0.59
0.21 0.51 355.99 72198 72229 73847 1.11 051
0.59 0.85 354.67 725.33 726.09 751.72 1.16 0.85
0.46 1.71 35211 726.22 727.62 76250 NaN 1.71
0.16 0.99 352.22 73244 73471 778.61 NaN 0.99
0.09 0.64 524.99 1 053.97 1054.01 1 061.38 0.00 0.64
0.35 0.16 519.70 1 049.41 1 049.61 1067.93 1.14 0.35
0.45 0.80 517.42 1 050.83 1051.33 1 080.46 1.34 0.80
0.70 0.90 513.86 1 049.73 1 050.64 1 090.47 NaN 0.90
0.52 0.73 514.41 1 056.82 1 058.30 1 108.68 NaN 0.73

Note: The minimum value of AIC, AlCc, BIC, NEC and NMC is
marked in bold respectively. For the NEC, its value becomes NaN when
the value of C(K) + E(K) — C(1) is approximately equal to 0.

Pl 1 Ky Sy InL
ze

S

[

0.05 0.91 94.17
0.41 0.37 91.54

n=50 0.44 0.39 91.54

n=100

n=200

n=300

GOPRrWONRPORAONRPORMONDRODMWDN

Table 3 Sample 2 with data generated from 0.7N(0,12) +
0.3N(2,12)
Sample

size KK]W SA{ IHL A|C
0.22 091 91.85 187.71
0.37 0.57 88.67 187.34
0.81 0.27 88.38 192.75
0.78 1.24 86.64 195.27
0.81 1.70 86.44 200.88
0.29 0.14 164.92 333.83
0.23 0.18 163.94 337.88
0.35 0.25 163.94 343.88
0.53 0.50 163.85 349.70
0.27 0.29 163.94 355.87
0.18 0.55 342.63 689.27
0.29 0.32 338.57 687.14
0.17 0.44 338.44 692.88

Selection criteria

AlCc BIC NEC NMC
187.96 19153 0.00 0.91
188.70 196.90 1.70 0.57
196.26 208.05 241 0.81
202.22 216.30 NaN 1.24
212.88 227.65 NaN 1.70
333.96 339.04 0.00 0.29
338,52 35091 1.07 0.23
34547 364.73 1.03 0.35
352.70 37835 1.04 0.53
360.82 392.35 1.02 0.29
689.33 695.87 0.00 0.55
687.45 70363 1.18 0.32
693.64 719.27 1.05 0.44
0.11 0.50 33844 698.87 700.28 735.16 1.04 0.50
0.22 0.61 338.36 704.72 706.99 750.90 1.03 0.61
0.12 0.40 523.49 1050.97 1051.01 1058.38 0.00 0.40
0.14 0.19 521.45 1052.90 1053.10 1 071.42 1.09 0.19
0.22 0.24 521.27 1058.55 1059.04 1088.18 1.04 0.24
0.29 0.29 521.24 1 064.49 1 065.40 1 105.23 1.02 0.29
0.43 0.61 519.87 1 067.75 1 069.22 1 119.60 1.05 0.61

Note: The minimum value of AIC, AlCc, BIC, NEC and NMC is
marked in bold respectively. For the NEC, its value becomes NaN when
the value of C(K) + E(K) — C(1) is approximately equal to 0.

[

n=50

n=100

n=300

n=300

abrwdNdDROWONRORMONRORMWODN

However, the evidence in Tables 2—4 is inadequate to
prove the advantage of the NMC, as no criterion is found

to consistently perform better than the rest in all cases. In
order to answer the question that whether NMC isthe most
advantageous criterion for the selection issue of the normal
mixture model, more experiments are taken to compute the
probability of these five criteria to make the correct deci-
sion.

Table 4 Sample 3 with data generated from 1/3N(0,12) +
1/3N(2,12) +1/3N(4,12)

Sample
K Ka Sy InlL
size MM AIC

0.23 0.83 105.25 214.51
0.45 0.37 101.56 213.12
0.87 0.93 100.70 217.40
0.92 0.54 100.46 222.93
0.90 0.89 100.27 228.53
0.05 0.81 199.92 403.84
0.68 0.36 196.68 403.37
0.35 0.28 195.25 406.51
0.38 0.81 194.35 410.70
0.19 0.91 194.40 416.80
0.08 0.88 411.21 826.41
0.35 0.14 403.00 816.00
0.20 0.34 402.77 821.55

Selection criteria
AlCc BIC NEC NMC
21476 218.33 0.00 0.83
21448 222.68 1.50 0.45
22091 23269 1.19 0.93
229.88 24396 1.17 0.92
240.53 255.30 1.09 0.90
403.96 409.05 0.00 0.81
404.00 416.39 1.17 0.68
408.09 42735 154 0.35
41370 43935 124 081
421.74 45327 111 091
826.47 833.01 0.00 0.88
816.31 83249 118 0.35
822.30 84794 1.08 0.34
0.13 0.42 402.67 827.34 828.75 863.62 1.06 0.42
0.14 0.45 40260 83321 83548 879.38 1.05 0.45
0.02 0.75 629.48 1 262.96 1 263.00 1 270.37 0.00 0.75
0.68 0.22 621.70 1 253.39 1253.60 1271.91 1.11 0.68
0.34 0.37 621.03 1258.05 1 258.55 1 287.68 1.07 0.37
0.57 0.76 619.13 1 260.27 1261.19 1 301.01 1.06 0.76
0.70 0.73 619.10 1 266.19 1 267.67 1 318.04 1.03 0.73

[

n=50

n=100

n=300

GRWNRPORAWONRPORMONRORMWODN

Note: The minimum value of AIC, AlCc, BIC, NEC and NMC is
marked in bold respectively. For the NEC, its value becomes NaN when
thevalue of C(K) + E(K) — C(1) is approximately equal to 0.

The probability of thesefive criteriain correctly estimat-
ing the true number of componentsis tabulated in Table 5.
Two major conclusions are procured. The first is that, the
NEC performs better even if n is small or N(K) islarge.
Less than half of the time, AIC/AICc, BIC and NEC cor-
rectly estimate the true number of componentswith asmall
sample size n = 50, 100, 150. Particularly, in the case of
the Sample 1 size equaling 150, the probability in correctly
recovering the true number of components for each of the
abovecriterionis 0.38, 0.4, 0.04 and 0.23. This means that
out of 150 simulated data set, AIC/AICc, BIC and NEC
respectively have correctly identified the true value of K
38, 40, 4 and 23 times. However, as regardsthe NMC, this
quantity has reached 56. With a true value of K equaling
3, the NMC also impacts the advantages over other crite-
ria. The results of Sample 3 in Table 5 shows that, with a
sample size 150, the NMC has correctly identified the true
vaueof K 24 timeswhilethetimes of the correct selection
of AIC/AICc, BIC and NEC are 20, 19, 0 and 12. It should
be pointed out that the performance of the AIC is second
only to our criterion.

The second finding revealed by Table 5 is that our
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moment-based criterion performs better and better as the
samplesize grows. Infact, appearancesare aikeonthisfor
these criteria. For example, with a sample size of 300, the
probability concerned for each of the AIC, AlCc, BIC and
NMC in Sample 1 has reached a value of 0.64, 0.63, 0.07
and 0.51. However, as an exception, the NEC has failed to
follow thisrule.

Table 5 Probability of correctly estimate the true number of com-
ponents K

Sample Selection criteria
size AlC AlCc BIC NEC NMC
n=50 0.29 0.19 001 053 0.37
n=100 0.32 0.33 0.05 033 0.46

Sample 1 n=150 0.38 0.4 0.04 0.23 0.56
n=200 0.53 0.53 0.06 0.2 0.54
n=300 0.64 0.63 0.07 0.04 0.51
n=50 0.18 0.22 0.1 0.54 0.24
n=100 0.36 0.33 0.05 0.3 0.42
Sample 2 n=150 0.3 0.31 0.03 0.12 0.4
n=200 0.5 0.48 0.05 0.09 051
n=300 0.5 0.5 0.04 0.14 0.5
n=50 0.1 0.05 0 0.22 0.11
n=100 0.15 0.11 0.01 0.1 0.19
Sample 3 n=150 0.2 0.19 0 0.12 0.24

n=200 0.17 0.17 0.01 0.06 0.22
n=300 0.16 0.16 0.01 0.07 0.29

Note: In this experiment, 100 series of simulated data are generated.
The probability of correctly estimate iscalculated astimes of correctly es-
timate/100. Each of the probability in this table takes a value range from
zero to one inclusively, with 0 implying that the criterion chooses none of
the correct model and 1 presents completely excellent selection ability of
the criterion.

Table6 Probability of underestimate of the true number of compo-
nents K

Sample Selection criteria
size AIC AlCc BIC NEC NMC
n=50 0.58 0.76 098 014 0.61
n=100 053 0.59 095  0.06 0.47

Sample 1 n=150 0.52 0.54 096  0.02 0.3
n=200 0.4 041 094 001 0.26
n=300 0.31 0.33 0.93 0 0.27
n=50 0.56 0.7 0.88  0.08 0.76
n=100 0.55 0.59 0.95 0 0.37
Sample 2 n=150 0.61 0.62 0.96 0 0.4
n=200 0.44 0.46 095  0.02 0.38
n=300 0.42 0.44 0.96 0 0.22
n=50 0.82 0.94 1 0.51 0.86
n=100 0.81 0.86 099 027 0.56
Sample 3 n=150 0.78 0.8 1 0.28 0.48

n=200 0.81 0.81 099 013 0.44
n=300 0.81 0.81 099 012 0.28

Note: The probability of underestimate is calculated as times of un-
derestimate/100, and we refer to the situation whereby a criterion selects
asmaller number of components than the true ones as under estimate.

Further investigation is regarding the under estimation
and over estimation of these criteria. Table 6 and Table 7
reveal that the AIC/AICc, BIC and NEC tend to underes-
timate the true number of components while the NEC is

diametrically opposed. For the NMC, the probability of
under estimation falls in the range of 0.27 and 0.61 in-
clusively. The probability of the under estimation, on the
other hand, reduces as the sample size grows. However,
as researchers hardly have large samples, identifying the
criterion that minimizes the probability of the under esti-
mation may be amore practically effort. From this respect,
it is observed from Table 5 that the NMC performsconsis-
tently better than other criteria, especialy in small sample
Cases.

Table 7 Probability of overestimate of the true number of compo-
nents K

Sample Selection criteria
size AlC AlCc BIC NEC NMC
n=50 0.13 0.05 001 033 0.02
n=100 0.15 0.08 0 0.61 0.07

Sample 1 n=150 0.1 0.06 0 0.75 0.14
n=200 0.07 0.06 0 0.79 0.2
n=300 0.05 0.04 0 0.96 0.22
n=50 0.26 0.08 002 038 0
n=100 0.09 0.08 0 0.7 0.21

Sample 2 n=150 0.09 0.07 001 088 0.2
n=200 0.06 0.06 0 0.89 0.11
n=300 0.08 0.06 0 0.86 0.28
n=50 0.08 0.01 0 0.27 0.03
n=100 0.04 0.03 0 0.63 0.25

Sample 3 n=150 0.02 0.01 0 0.6 0.28
n=200 0.02 0.02 0 0.81 0.34

n=300  0.03 0.03 0 0.81 0.43

Note: The probability of underestimate is calculated as times of over-
estimate/100, and we refer to the situation whereby a criterion selects a
larger number of components than the true ones as over estimate.

5. Conclusions

Mixture models, especially the mixture of normals, have
got ever broader use in fitting asset returns. As assessing
the number of components plays an important role in a
mixture model, this paper attempts to provide a more tar-
geted criterion which helps select the appropriate model
for norma mixture models. Compared with the AIC, the
NEC heavily penalizes the local goodness of fit of al the
components in the mixture model. Our criterion addition-
aly provides a test of a model in an absolute sense of
testing its quality. Compared with the well-known criteria
(AIC/AICc, BIC and NEC), the practical behavior of our
moment-based criterion is superior to other criteriain the
problem of determining the number of components. More-
over, the performance of the NM C becomes better and bet-
ter as the sample size grows.

One limitation of our work is that the proposed method
is applied only for univariate normal mixture models. For
further study, the criterion can be extended to multivariate
normal mixture models. Another possible extension of this
work is to optimize the form for the measure of the local
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goodness of fit. In this work, we simply make use of the
maximum value of kurtosis and skewness which may not
be suitable for data set with different sample sizes or sam-
ple shapes. One possible solution to overcome this prob-
lem is to discover the law of variances for the statistics of
skewness and kurtosis.
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