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Abstract: Determining the number of components is a crucial is-
sue in a mixture model. A moment-based criterion is considered to
estimate the number of components arising from a normal mixture
model. This criterion is derived from an omnibus statistic involving
the skewness and kurtosis of each component. The proposed cri-
terion additionally provides a measurement for the model fit in an
absolute sense. The performances of our criterion are satisfactory
compared with other classical criteria through Monte-Carlo experi-
ments.
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1. Introduction

Nowadays there is a widespread empirical evidence that
finite mixture models have been powerful tools for analyz-
ing data where observations originate from various com-
ponents. The analyses of such finite mixture models are
commonly carried out by using the maximum likelihood
estimation with the known number of mixture components
[1,2]. This naturally leads to the development of the selec-
tion criterion for determining the number of components
in a mixture model.

A selecting criterion commonly deals with the trade-off
between the quality of the model and the complexity of
the model. Following this rule, there are various selection
criteria to determine the number of components in a mix-
ture model in literature. The Akaike’s information criterion
(AIC) [3] and the Bayesian information criterion (BIC) [4]
are the most widely used criteria among them. In addition,
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numbers of studies provide targeted methods in accessing
the number of components for a mixture model. These re-
searches involve methods based on likelihood ratio test [5 –
9], Bayesian analysis [10 – 12], entropy criterion [13,14],
homogeneity test [15,16] and graphical technique [17].

We provide a novel criterion to determine the appropri-
ate number of components for a mixture model based on its
moments. This criterion is derived from an omnibus statis-
tic involving the skewness and kurtosis of each component.
Our motivation for this study is twofold.

Firstly, our work is inspired by the simplicity of qua-
lity tests for normality. On the one hand, since mixtures
of the normal distribution consist of more than one normal
components, it is natural to wonder whether each normal
component in a mixture model enjoys the similar statistic
features with the normal distribution. On the other hand,
the moment-based methods are widely used in testing nor-
mality [18 – 20].

In this sense, the criterion based on the moments is
likely to be a neglected area of research in the mixture
model. Based on our empirical results, the former four mo-
ments of each component, as defined in a Gaussian mix-
ture model, share similar statistical characters with that of
a normal distribution. Therefore, we find a supportive evi-
dence for the feasibility of using the moment-based statis-
tics to access the quality of our model.

Secondly, except for its comprehensibility and simplici-
ty of calculation, our criterion additionally provides eva-
luation for the model quality in an absolute sense. We par-
ticularly compare our criterion with the AIC, BIC and nor-
malized entropy criterion (NEC) which enjoy the compu-
tational convenience as well. It should be noticed that the
AIC and BIC both provide evaluations of the models in a
relative sense of testing its quality, which means that if all
the candidate models fit poorly, these criteria will not give
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any warning of that. The work of Celeux and Soromenho
[13] has approached this issue in a practical way. However,
researchers have cast doubt that their procedure has shown
a disappointing behavior [21]. In addition, compared with
other criteria such as AIC, BIC, it suffers from the limita-
tion that it cannot decide between one and more than one
clusters [22].

Compared with the AIC and BIC, our criterion provides
the testing of model quality in an absolute sense while
those criteria are not devoted to measuring the performance
of the mixture model. Besides, it provides more targeted
criterion for the normal mixture model. Compared with the
NEC, our criterion gets a better performance and is of no
doubt with the decision between one and more than one
clusters. The performances of our criterion are satisfac-
tory compared with these classical criteria through Monte-
Carlo experiments.

The rest of this paper is organized as follows. Section 2
introduces the classical criteria used for the model selec-
tion. Section 3 gives a heuristic discussion of our selection
criterion, followed in Section 4, simulation procedures are
designed to evaluate the performance of the criterion. Sec-
tion 5 offers a summary.

2. Criteria for the number of components in
a normal mixture model

A normal mixture model is a weighted sum of K compo-
nent normal densities as given by

P (x|λ) =
K∑

j=1

τjg(x|μj ,Σ j) (1)

where x is a d-dimensional vector, τj (j = 1, 2, . . . , K) is
the mixture weights, and g(x|μj ,Σ j) is the normal den-
sity

g(x|μj ,Σ j) =

(2π)−d/2|Σ j |−1/2 exp[−(x − μj)TΣ−1
j (x − μj)] (2)

with the mean vector μj and covariance matrix Σ j . The

mixture weights satisfy the constraint that
K∑

j=1

τj = 1.

The mixture model assumes that each observed data point
xi has a corresponding unobserved data point, or latent
variable τ i

j (1 � i � n, 1 � j � K), specifying the
mixture component that each data point belongs to. Let
x1, x2, . . . , xn denote a random training set of independent
and identically distributed samples taken from the mixture
distribution in (2). The log-likelihood function can be writ-
ten as

L(K) =
n∑

i=1

ln

⎛
⎝ K∑

j=1

τjg(x|λj)

⎞
⎠ (3)

where λj = {τj , μj ,Σ j} (j = 1, 2, . . . , K). L(K) is re-
garded to contain information about model fit. Meanwhile,
L(K) is an increasing function of K in general while a
larger K indicates more model complexity. Various criteria
to be minimized have been proposed to measure a model’s
suitability by balancing model fit and model complexity.

The Akaike information criterion [3], considered in [23]
in the mixture context, takes the form

AIC(K) = −2 lnL(K) + 2N(K) (4)

where N(K) is the number of the unknown parameters.
The Bayesian information criterion defined by Schwarz

[4] approximates the exact Bayes solution to the problem
of selecting the appropriate model and is defined as

BIC(K) = −2 lnL(K) + ln(n)N(K) (5)

Closely related to the AIC, the BIC or Schwarz criterion
is partly based on the likelihood function. When determin-
ing the number of mixture components, the AIC tends to
overestimate and the BIC tends to underestimate the num-
ber of components K [22,24,25]. These criteria (especially
the AIC) have been widely adopted in model selection, see
for examples the works of Yamaoka et al. [26], Anderson
et al. [27] and Posada and Crandall [28]. However, neither
AIC nor BIC provides a test in an absolute sense of test-
ing the model quality, which means that if all the candidate
models fit poorly, these criteria will not give any warning
of that.

The normalized entropy criterion proposed by Celeux
and Soromenho [13] is derived from a relation linking the
likelihood and the classification likelihood of a mixture
and is expressed as

NEC(K) =
E(K)

C(K) + E(K) − C(1)
. (6)

This is a transform form of the entropy crite-
rion of Celeux and Soromenho [13] where E(K) =
K∑

j=1

n∑
i=1

τij ln(τij) and C(K) =
K∑

j=1

n∑
i=1

τjg(xi; λj).

Celeux and Soromenho [13] concentrated on the view of
the cluster analysis to estimate the number of components
arising from a normal mixture model. Under their assump-
tions, the probability of each sample point to which com-
ponent may belong should be one or zero in the best cases.

3. A moment-based criterion

We propose a criterion which aims to measure the ability
of the model in separating mixtures of normals. It empha-
sizes the model with its goodness of fit in general, as well
as its partial benefits. According to Akaike, the AIC crite-
rion suggests the use of likelihood as a measure of fit of a
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model. However, this measure can only make a comparison
in the goodness of fit rather than an absolute judgment. The
measure for partial benefits in the proposed criterion can
make up for this advantage. Under the assumption of the
accumulated normal density, each component is assumed
to be normal. As for a normal distribution, each eigenvalue
can be described by its mean and variance. It is unneces-
sary to consider its higher moments since that skewness
and kurtosis are both equal to zero for the normal distri-
bution. For this reason, the skewness and kurtosis of each
component are to be penalized in our criterion.

3.1 Skewness and kurtosis of each component in
a mixture of normals

3.1.1 Measuring the skewness and kurtosis of
each component

In the probability theory and statistics, skewness and kur-
tosis both describe the shape of a probability distribution
of a real-valued random variable. Skewness is a descriptor
of the asymmetry while the kurtosis presents the “peaked-
ness” [29]. There are different ways of quantifying them
for a theoretical distribution and corresponding ways of
estimating them from a sample. One common measure of
skewness and kurtosis, originating with Karl Pearson [30],
is based on a scaled version of the third and fourth moment
of the data respectively. Pearson’s moment coefficients of
skewness and excess kurtosis are used to provide a com-
parison of the shape of a given distribution to that of the
normal distribution. It has been argued that there was no
emphasis in Pearson’s original work on kurtosis as mea-
suring (in part) tail heaviness which seems to be its more
frequent contemporary usage. For this reason, an adjusted
version of Pearson’s kurtosis is commonly used instead.
According to Pearson’s moment coefficients of skewness
and excess, the skewness of a random variable x is the third
standardized moment, denoted by

√
b1 and defined as

√
b1 =

E[(x − u)3]
(E[(x − u)2])3/2

= E

[(
x − μ

σ

)3
]

. (7)

Excess kurtosis is equal to the fourth moment around the
mean divided by the square of the variance of the probabil-
ity distribution minus 3,

b2 =
E[(x − u)4]

(E[(x − u)2])2
− 3 =

E[(x − u)4]
σ4

− 3. (8)

This subsection is designed to measure the skewness
and kurtosis for each normal in the mixture model. Con-

straint that
K∑

j=1

τj = 1. Coupled with the terms in (7) and

(8), the coefficient of skewness for the kth normal distribu-
tion is computed as

√
b
(k)

1 = Ek

[(
x − μ

σ

)3
]

=

∫∞

−∞

(
x − uk

σk

)3

g(x|μk, σk)dx. (9)

In order to transform the term inside the integral into the
production of P (x) and some function F (x|k), the term
g(x|μk, σk) is transformed into form

g(x|μk, σk) = g(x|k) =
p(k|x)

τk
P (x). (10)

By the Bayes’ rule, and (9) turns to

√
b
(k)

1 =
∫∞

−∞

(
x − uk

σk

)3
p(k|x)

τk
P (x)dx. (11)

Note that in (11), the term
∫∞

−∞

(
x − uk

σk

)3
p(k|x)

τk
P (x)dx

is the expectation of function

(
x − uk

σk

)3
p(k|x)

τk
under

the probability distribution P (x). The probability that a
given point xk belongs to the kth component is signed as
τik. Then, this expectation [31,32] can be approximated as

√
b
(k)

1 ≈ 1
n

n∑
i=1

(
xi − uk

σk

)3
τik

τk
. (12)

In a similar way to the measure of the skewness
√

b
(k)

1 ,
the coefficient of the kurtosis b

(k)
2 can be approximated as

b
(k)
2 ≈ 1

n

n∑
i=1

(
xi − uk

σk

)4
τik

τk
− 3. (13)

3.1.2 Asymmetric distributions of
√

b
(k)

1 and b
(k)
2

Pearson, over a long period, has studied the distribution
of the sample skewness and kurtosis statistics

√
b1 and b2

with samples from a normal population, for example see
[33]. Since then,

√
b1 and b2 have been used to test the

null hypothesis that the distribution sampled is the normal
[18,19,34]. D’Agostino and Pearson [18] have suggested
an omnibus statistic in the form of X 2

T = X2
1 (
√

b1) +
X2

2 (b2), where X1(
√

b1) and X2(b2) follow standardized
normal distribution approximately, and the statistic X 2

T is
distributed as χ2(2). X1(

√
b1) and X2(b2) can be written

as

X1(
√

b1) =
√

b1/
√

6/n, X2(b2) = (b2 − 3)/
√

24/n

while 6/n and 24/n are the asymptotic variances of
√

b1

and b2 [19]. A point worth noted is that the statistic X 2
T =
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(
√

b1/
√

6/n)2 + ((b2 − 3)/
√

24/n)2 requires large sam-
ples to be distributed as a χ2 distribution.

Since a normal mixture distribution consists of more
than one normal component, it is natural to wonder

whether
√

b
(k)

1 and b
(k)
2 in the kth component enjoy the

similar statistic features with that of
√

b1 and b2. To an-
swer this question, we generate Experiment 1 to assess the

behavior of
√

b
(k)

1 and b
(k)
2 in a mixture of two normal pop-

ulations and compare with that of
√

b1 and b2 in a normal
distribution.

Experiment In this experiment, 100 000 random
samples are drawn from the distributions N(2, 22) and
0.3N(2, 22) + 0.7N(4, 22) respectively. We carry out
10 000 replications and estimate the moments of

√
b1, b2,√

b
(k)

1 , b
(k)
2 and the related variables.

Table 1 Statistics of
√

b1, b2,
√

b
(k)
1 , b

(k)
2 and related variables

with sample size n = 100 000

Normal
Mixture of two normals

(τ = [0.3, 0.7])Statistics √
b1 b2

√
b
(1)
1 b

(1)
2

√
b
(2)
1 b

(2)
2

Mean 0.000 0 3.000 1 0.000 2 3.000 2 0.000 2 2.999 9
Std. 0.007 7 0.015 4 0.014 9 0.019 6 0.011 0 0.014 4

Jarque Bera 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.063 0
Std. of Xk(·) 0.999 7 0.993 1 1.924 3 1.263 0 1.425 9 0.930 2

Note: The probability of rejecting the normality in Table 1 indicates
that all the variables are considered normal statistically.

As seen in Table 1, it is not surprising that the distribu-
tions of X1(

√
b1) and X2(b2) are approximated N(0, 12)

in the results of Monte Carlo simulations. Similarly, the

results of Monte Carlo simulations on
√

b
(k)

1 and b
(k)
2 in-

dicate that the distributions of skewness and kurtosis in
the mixture of normal condition are approximated nor-

mal. However, the distributions of X1(
√

b
(k)

1 ) or X2(b
(k)
2 )

do not approximate to a standard normal distribution as
X1(

√
b1) or X2(b2) does. Therefore, the similar transform

functions cannot be used to generate the statistics for test-
ing the local model fit. In this paper, we use the original

forms of
√

b
(k)

1 and b
(k)
2 which are approximated normal

with limited means and variances.

3.2 The proposed criterion

Similar to the NEC, our criterion not only includes the
model selecting function, but also rewards the model fit.
The proposed criterion is derived from a statistic involv-
ing the skewness and kurtosis of each component. Our
moment-based criterion (NMC) takes the form

NMC(K) = max{|
√

b
(k)

1 |, |b(k)
2 |} (14)

where
√

b
(k)

1 and b
(k)
2 correspond to the measure of skew-

ness and kurtosis of each normal component respectively.

For a well-fitting normal mixture model, the skewness

(
√

b
(k)

1 ) and kurtosis (b(k)
2 ) of each normal component are

considered for the advantage that skewness and kurtosis
are standards in test for normality and their value should
be approximated to zero. On the contrary, if for some com-
ponent j the distribution of the samples in its vicinity is

non-normal, the associated value of
√

b
(j)

1 or kurtosis b
(j)
2

would deviate from zero to a positive or negative number.
Vlassis and Likas [35] have proposed a total kurtosis mea-

sure KT =
K∑

j=1

τj |b(j)
2 | to value how large this deviation

is for the whole mixture. They also underlined the appli-
cation of KT as a measure of how well a normal mixture
fits the data. It should reinforce the point that, considering
the weighted sum of |b(j)

2 | may ignore the information of
kurtosis corresponding to a light weight τj . As an exam-
ple, the maximum kurtosis and the total kurtosis KT with
different component number K are computed based on the
method in [35]. As can be seen in Fig. 1, the value of the to-
tal kurtosis KT (which corresponds to the red line) reflects
that the goodness of fit is getting better while the value of
maximum kurtosis indicates a worse model fit.

Fig. 1 The maximum kurtosis and the total kurtosis

In this paper, the maximum absolute value of skewness
and kurtosis is used as a substitute indicator for the to-
tal value. The values of

√
b
(k)

1 and b
(k)
2 as defined in (12)

and (13) are the moment information of each component
of the mixture model which should be both equal to zero
under the normal assumption. In other words, for a normal

mixture model the smaller the absolute value of
√

b
(k)

1 and

b
(k)
2 the better. Clearly, the upper bound of both

√
b
(k)

1 and

b
(k)
2 can be described by their maximum absolute values as

Max{|√b
(k)

1 |} and Max{|b(k)
2 |}. For the further step, the

measure of the local goodness of the fit is defined as the

maximum value of Max{|√b
(k)

1 |} and Max{|b(k)
2 |}.
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As previously mentioned,

NMC(K) = max{|
√

b
(k)

1 |, |b(k)
2 |}

is proposed as a criterion to be minimized for. This cri-
terion NMC(K) is chosen for two reasons. Firstly, while
the AIC can tell nothing about the quality of the model in
an absolute sense, the moment-based criterion reflects the
behavior of the model. Secondly, NMC(K) is not a mono-
tone function of K . Given a set of candidate models for
the data, the preferred model is the one with the minimum
NMC(K) value.

4. Numerical experiments

Briefly, the simulation procedure involves three sub-
routines: with the first sub-routine generating data sets
from the normal mixture models, whereas the second sub-
routine estimates the parameters of each competing model
using the expectation maximization (EM) algorithm and
completes the selection procedure and the third sub-routine
evaluates the performance of the criterion. In the procedure
of the parameter estimation, we run 10 times the EM algo-
rithm which starts with random initial position with differ-
ent values of K and select the solution with the maximum
likelihood.

In order to illustrate the performances of the NMC in
the problem of determining the number of components, the
practical behavior of the NMC are compared with the well-
known criteria AIC, AICc, BIC, NEC by Monte-Carlo ex-
periments. AICc is an AIC with a greater penalty for extra
parameters. Burnham and Anderson strongly recommend
using AICc, rather than AIC [36], if n is small or N(K) is
large. The expressions for the model selection criteria are

AIC(K) = −2 lnL(K) + 2N(K)

AICc(K) = AIC(K) +
2N(K)(N(K) + 1)
(n − N(K) − 1)

BIC(K) = −2 lnL(K) + N(K) ln(n)

NEC(K) =
E(K)

(C(K) + E(K) − C(1))

NMC(K) = max{|
√

b
(k)

1 |, |b(k)
2 |}

where N(K) is the number of the unknown parameters.
When these criteria are applied, the model producing the
lowest value is chosen. For the NEC, the model NEC(1)
will not be considered since there remains controversy
about this case.

4.1 Experiment conditions

(i) In this experiment, we take the same simulated data
sets as [13]. Sample sizes n = 50, 100, 200, 300 are con-
sidered. The first data set is a two-component normal mix-
ture distribution with parameters μ1 = 0, μ2 = 2 and stan-
dard deviations σ1 = σ2 = 1 and proportions τ1 = τ2 =

0.5. The second one is a two-component normal mixture
with proportions τ1 = 0.7, with means μ1 = 0, μ2 = 2
and standard deviations σ1 = σ2 = 1. The third one is a
three-component normal mixture with equal proportions,
with means μ1 = 0, μ2 = 2, μ3 = 4 and standard devia-
tions σ1 = σ2 = σ3 = 1.

(ii) The main task of Experiment 2 is to compute the
probability of each criterion in correctly estimating the true
number of components. Note that this probability p takes a
value range from zero to one inclusively, with p = 0 im-
plying that the criterion chooses none of the correct model
and p = 1 presents completely excellent selection abil-
ity of the criterion. In this experiment, series of simulated
data are generated. The first 100 series of data are two-
component normal mixture distributions with parameters
μ1 = 0 + 0.01t, μ2 = 2 + 0.01t where t = 1, 2, . . . , 100
and standard deviations σ1 = σ2 = 1 and proportions
τ1 = τ2 = 0.5. The second 100 series of data are two-
component normal mixture with proportions τ1 = 0.7,
with means μ1 = 0 + 0.01t, μ2 = 2 + 0.01t and stan-
dard deviations σ1 = σ2 = 1. The third one is a three-
component normal mixture with equal proportions, with
means μ1 = 0 + 0.01t, μ2 = 2 + 0.01t, μ3 = 4 + 0.01t

and standard deviations σ1 = σ2 = σ3 = 1. Sample sizes
are settled with n = 50, 100, 150, 200, 300.

4.2 Simulation results

Tables 2 – 4 show some details about the fitting results of
the competing models. The maximum number of compo-
nents is limited to be five, which means there are five
competing models in total. Columns 2 and 3 display the
maximum absolute value of skewness and kurtosis for the
data points in each component from which the goodness of
fit for each component can be investigated. The compara-
tive performance of the five criteria in selecting the correct
model is illustrated in columns 5 to 9. It is of interest to
investigate the situation when the value of K is overes-
timated or underestimated. We will refer to the situation
whereby a criterion selects a smaller number of compo-
nents than the true ones as underestimate, whereas over-
estimate would mean the selection of a larger number of
components than the true ones. As seen in Tables 2 – 4,
the NEC presents a slight tendency to overestimate the
number of normal components while AIC/AICc and BIC
trend to underestimate the number of components. As for
the moment-based criterion, there is no obvious regular-
ity to be overestimate or underestimate. Taken together,
the moment-based criterion has the most satisfactory be-
havior in those experiments. Compared with the AIC, the
NMC seems to heavily penalize the local goodness of fit
of all the components in the mixture model. For instance,
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as exhibited in Table 2, the skewness and kurtosis play es-
pecially distinct roles in the selecting procedure since the
model reaches the best local model fit when the number of
components is 2.

Table 2 Sample 1 with data generated from 0.5N(0,12) +

0.5N(2,12)

Sample Selection criteria
size

K KM SM ln L
AIC AICc BIC NEC NMC

1 0.05 0.91 94.17 192.33 192.59 196.15 0.00 0.91
2 0.41 0.37 91.54 193.08 194.45 202.64 1.52 0.41

n=50 3 0.44 0.39 91.54 199.08 202.60 214.38 1.10 0.44
4 0.25 0.44 91.53 205.06 212.00 226.09 1.07 0.44
5 1.37 1.13 89.71 207.42 219.42 234.18 NaN 1.37
1 0.11 0.86 179.72 363.43 363.56 368.64 0.00 0.86
2 0.58 0.14 175.56 361.12 361.76 374.15 1.33 0.58

n=100 3 0.99 0.69 174.94 365.88 367.46 386.72 1.33 0.99
4 1.00 0.66 174.97 371.95 374.95 400.60 1.09 1.00
5 1.08 0.78 174.98 377.95 382.90 414.43 1.06 1.08
1 0.00 0.59 358.88 721.75 721.81 728.35 0.00 0.59
2 0.21 0.51 355.99 721.98 722.29 738.47 1.11 0.51

n=200 3 0.59 0.85 354.67 725.33 726.09 751.72 1.16 0.85
4 0.46 1.71 352.11 726.22 727.62 762.50 NaN 1.71
5 0.16 0.99 352.22 732.44 734.71 778.61 NaN 0.99
1 0.09 0.64 524.99 1 053.97 1 054.01 1 061.38 0.00 0.64
2 0.35 0.16 519.70 1 049.41 1 049.61 1 067.93 1.14 0.35

n=300 3 0.45 0.80 517.42 1 050.83 1 051.33 1 080.46 1.34 0.80
4 0.70 0.90 513.86 1 049.73 1 050.64 1 090.47 NaN 0.90
5 0.52 0.73 514.41 1 056.82 1 058.30 1 108.68 NaN 0.73

Note: The minimum value of AIC, AICc, BIC, NEC and NMC is
marked in bold respectively. For the NEC, its value becomes NaN when
the value of C(K) + E(K) − C(1) is approximately equal to 0.

Table 3 Sample 2 with data generated from 0.7N(0,12) +
0.3N(2,12)

Sample Selection criteria
size

K KM SM ln L
AIC AICc BIC NEC NMC

1 0.22 0.91 91.85 187.71 187.96 191.53 0.00 0.91
2 0.37 0.57 88.67 187.34 188.70 196.90 1.70 0.57

n=50 3 0.81 0.27 88.38 192.75 196.26 208.05 2.41 0.81
4 0.78 1.24 86.64 195.27 202.22 216.30 NaN 1.24
5 0.81 1.70 86.44 200.88 212.88 227.65 NaN 1.70
1 0.29 0.14 164.92 333.83 333.96 339.04 0.00 0.29
2 0.23 0.18 163.94 337.88 338.52 350.91 1.07 0.23

n=100 3 0.35 0.25 163.94 343.88 345.47 364.73 1.03 0.35
4 0.53 0.50 163.85 349.70 352.70 378.35 1.04 0.53
5 0.27 0.29 163.94 355.87 360.82 392.35 1.02 0.29
1 0.18 0.55 342.63 689.27 689.33 695.87 0.00 0.55
2 0.29 0.32 338.57 687.14 687.45 703.63 1.18 0.32

n=300 3 0.17 0.44 338.44 692.88 693.64 719.27 1.05 0.44
4 0.11 0.50 338.44 698.87 700.28 735.16 1.04 0.50
5 0.22 0.61 338.36 704.72 706.99 750.90 1.03 0.61
1 0.12 0.40 523.49 1050.97 1051.01 1058.38 0.00 0.40
2 0.14 0.19 521.45 1 052.90 1 053.10 1 071.42 1.09 0.19

n=300 3 0.22 0.24 521.27 1 058.55 1 059.04 1 088.18 1.04 0.24
4 0.29 0.29 521.24 1 064.49 1 065.40 1 105.23 1.02 0.29
5 0.43 0.61 519.87 1 067.75 1 069.22 1 119.60 1.05 0.61

Note: The minimum value of AIC, AICc, BIC, NEC and NMC is
marked in bold respectively. For the NEC, its value becomes NaN when
the value of C(K) + E(K) − C(1) is approximately equal to 0.

However, the evidence in Tables 2 – 4 is inadequate to
prove the advantage of the NMC, as no criterion is found

to consistently perform better than the rest in all cases. In
order to answer the question that whether NMC is the most
advantageous criterion for the selection issue of the normal
mixture model, more experiments are taken to compute the
probability of these five criteria to make the correct deci-
sion.

Table 4 Sample 3 with data generated from 1/3N(0,12) +

1/3N(2,12) + 1/3N(4,12)

Sample Selection criteria
size

K KM SM ln L
AIC AICc BIC NEC NMC

1 0.23 0.83 105.25 214.51 214.76 218.33 0.00 0.83
2 0.45 0.37 101.56 213.12 214.48 222.68 1.50 0.45

n=50 3 0.87 0.93 100.70 217.40 220.91 232.69 1.19 0.93
4 0.92 0.54 100.46 222.93 229.88 243.96 1.17 0.92
5 0.90 0.89 100.27 228.53 240.53 255.30 1.09 0.90
1 0.05 0.81 199.92 403.84 403.96 409.05 0.00 0.81
2 0.68 0.36 196.68 403.37 404.00 416.39 1.17 0.68

n=100 3 0.35 0.28 195.25 406.51 408.09 427.35 1.54 0.35
4 0.38 0.81 194.35 410.70 413.70 439.35 1.24 0.81
5 0.19 0.91 194.40 416.80 421.74 453.27 1.11 0.91
1 0.08 0.88 411.21 826.41 826.47 833.01 0.00 0.88
2 0.35 0.14 403.00 816.00 816.31 832.49 1.18 0.35

n=200 3 0.20 0.34 402.77 821.55 822.30 847.94 1.08 0.34
4 0.13 0.42 402.67 827.34 828.75 863.62 1.06 0.42
5 0.14 0.45 402.60 833.21 835.48 879.38 1.05 0.45
1 0.02 0.75 629.48 1 262.96 1 263.00 1 270.37 0.00 0.75
2 0.68 0.22 621.70 1 253.39 1 253.60 1 271.91 1.11 0.68

n=300 3 0.34 0.37 621.03 1 258.05 1 258.55 1 287.68 1.07 0.37
4 0.57 0.76 619.13 1 260.27 1 261.19 1 301.01 1.06 0.76
5 0.70 0.73 619.10 1 266.19 1 267.67 1 318.04 1.03 0.73

Note: The minimum value of AIC, AICc, BIC, NEC and NMC is
marked in bold respectively. For the NEC, its value becomes NaN when
the value of C(K) + E(K) − C(1) is approximately equal to 0.

The probability of these five criteria in correctly estimat-
ing the true number of components is tabulated in Table 5.
Two major conclusions are procured. The first is that, the
NEC performs better even if n is small or N(K) is large.
Less than half of the time, AIC/AICc, BIC and NEC cor-
rectly estimate the true number of components with a small
sample size n = 50, 100, 150. Particularly, in the case of
the Sample 1 size equaling 150, the probability in correctly
recovering the true number of components for each of the
above criterion is 0.38, 0.4, 0.04 and 0.23. This means that
out of 150 simulated data set, AIC/AICc, BIC and NEC
respectively have correctly identified the true value of K

38, 40, 4 and 23 times. However, as regards the NMC, this
quantity has reached 56. With a true value of K equaling
3, the NMC also impacts the advantages over other crite-
ria. The results of Sample 3 in Table 5 shows that, with a
sample size 150, the NMC has correctly identified the true
value of K 24 times while the times of the correct selection
of AIC/AICc, BIC and NEC are 20, 19, 0 and 12. It should
be pointed out that the performance of the AIC is second
only to our criterion.

The second finding revealed by Table 5 is that our
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moment-based criterion performs better and better as the
sample size grows. In fact, appearances are alike on this for
these criteria. For example, with a sample size of 300, the
probability concerned for each of the AIC, AICc, BIC and
NMC in Sample 1 has reached a value of 0.64, 0.63, 0.07
and 0.51. However, as an exception, the NEC has failed to
follow this rule.

Table 5 Probability of correctly estimate the true number of com-
ponents K

Sample Selection criteria
size AIC AICc BIC NEC NMC
n=50 0.29 0.19 0.01 0.53 0.37
n=100 0.32 0.33 0.05 0.33 0.46

Sample 1 n=150 0.38 0.4 0.04 0.23 0.56
n=200 0.53 0.53 0.06 0.2 0.54
n=300 0.64 0.63 0.07 0.04 0.51
n=50 0.18 0.22 0.1 0.54 0.24
n=100 0.36 0.33 0.05 0.3 0.42

Sample 2 n=150 0.3 0.31 0.03 0.12 0.4
n=200 0.5 0.48 0.05 0.09 0.51
n=300 0.5 0.5 0.04 0.14 0.5
n=50 0.1 0.05 0 0.22 0.11
n=100 0.15 0.11 0.01 0.1 0.19

Sample 3 n=150 0.2 0.19 0 0.12 0.24
n=200 0.17 0.17 0.01 0.06 0.22
n=300 0.16 0.16 0.01 0.07 0.29

Note: In this experiment, 100 series of simulated data are generated.
The probability of correctly estimate is calculated as times of correctly es-
timate/100. Each of the probability in this table takes a value range from
zero to one inclusively, with 0 implying that the criterion chooses none of
the correct model and 1 presents completely excellent selection ability of
the criterion.

Table 6 Probability of underestimate of the true number of compo-
nents K

Sample Selection criteria
size AIC AICc BIC NEC NMC
n=50 0.58 0.76 0.98 0.14 0.61
n=100 0.53 0.59 0.95 0.06 0.47

Sample 1 n=150 0.52 0.54 0.96 0.02 0.3
n=200 0.4 0.41 0.94 0.01 0.26
n=300 0.31 0.33 0.93 0 0.27
n=50 0.56 0.7 0.88 0.08 0.76
n=100 0.55 0.59 0.95 0 0.37

Sample 2 n=150 0.61 0.62 0.96 0 0.4
n=200 0.44 0.46 0.95 0.02 0.38
n=300 0.42 0.44 0.96 0 0.22
n=50 0.82 0.94 1 0.51 0.86
n=100 0.81 0.86 0.99 0.27 0.56

Sample 3 n=150 0.78 0.8 1 0.28 0.48
n=200 0.81 0.81 0.99 0.13 0.44
n=300 0.81 0.81 0.99 0.12 0.28

Note: The probability of underestimate is calculated as times of un-
derestimate/100, and we refer to the situation whereby a criterion selects
a smaller number of components than the true ones as under estimate.

Further investigation is regarding the under estimation
and over estimation of these criteria. Table 6 and Table 7
reveal that the AIC/AICc, BIC and NEC tend to underes-
timate the true number of components while the NEC is

diametrically opposed. For the NMC, the probability of
under estimation falls in the range of 0.27 and 0.61 in-
clusively. The probability of the under estimation, on the
other hand, reduces as the sample size grows. However,
as researchers hardly have large samples, identifying the
criterion that minimizes the probability of the under esti-
mation may be a more practically effort. From this respect,
it is observed from Table 5 that the NMC performs consis-
tently better than other criteria, especially in small sample
cases.

Table 7 Probability of overestimate of the true number of compo-
nents K

Sample Selection criteria
size AIC AICc BIC NEC NMC
n=50 0.13 0.05 0.01 0.33 0.02
n=100 0.15 0.08 0 0.61 0.07

Sample 1 n=150 0.1 0.06 0 0.75 0.14
n=200 0.07 0.06 0 0.79 0.2
n=300 0.05 0.04 0 0.96 0.22
n=50 0.26 0.08 0.02 0.38 0
n=100 0.09 0.08 0 0.7 0.21

Sample 2 n=150 0.09 0.07 0.01 0.88 0.2
n=200 0.06 0.06 0 0.89 0.11
n=300 0.08 0.06 0 0.86 0.28
n=50 0.08 0.01 0 0.27 0.03
n=100 0.04 0.03 0 0.63 0.25

Sample 3 n=150 0.02 0.01 0 0.6 0.28
n=200 0.02 0.02 0 0.81 0.34
n=300 0.03 0.03 0 0.81 0.43

Note: The probability of underestimate is calculated as times of over-
estimate/100, and we refer to the situation whereby a criterion selects a
larger number of components than the true ones as over estimate.

5. Conclusions

Mixture models, especially the mixture of normals, have
got ever broader use in fitting asset returns. As assessing
the number of components plays an important role in a
mixture model, this paper attempts to provide a more tar-
geted criterion which helps select the appropriate model
for normal mixture models. Compared with the AIC, the
NEC heavily penalizes the local goodness of fit of all the
components in the mixture model. Our criterion addition-
ally provides a test of a model in an absolute sense of
testing its quality. Compared with the well-known criteria
(AIC/AICc, BIC and NEC), the practical behavior of our
moment-based criterion is superior to other criteria in the
problem of determining the number of components. More-
over, the performance of the NMC becomes better and bet-
ter as the sample size grows.

One limitation of our work is that the proposed method
is applied only for univariate normal mixture models. For
further study, the criterion can be extended to multivariate
normal mixture models. Another possible extension of this
work is to optimize the form for the measure of the local
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goodness of fit. In this work, we simply make use of the
maximum value of kurtosis and skewness which may not
be suitable for data set with different sample sizes or sam-
ple shapes. One possible solution to overcome this prob-
lem is to discover the law of variances for the statistics of
skewness and kurtosis.
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