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Abstract: Ballistic missile defense system (BMDS) is important
for its special role in ensuring national security and maintaining
strategic balance. Research on modeling and simulation of the
BMDS beforehand is essential as developing a real one requires
lots of manpower and resources. BMDS is a typical complex sys-
tem for its nonlinear, adaptive and uncertainty characteristics.
The agent-based modeling method is well suited for the complex
system whose overall behaviors are determined by interactions
among individual elements. A multi-agent decision support system
(DSS), which includes missile agent, radar agent and command
center agent, is established based on the studies of structure and
function of BMDS. Considering the constraints brought by radar,
intercept missile, offensive missile and commander, the objective
function of DSS is established. In order to dynamically generate
the optimal interception plan, the variable neighborhood negative
selection particle swarm optimization (VNNSPSO) algorithm is
proposed to support the decision making of DSS. The proposed
algorithm is compared with the standard PSO, constriction fac-
tor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO),
variable neighborhood PSO (VNPSO) algorithm from the aspects
of convergence rate, iteration number, average fitness value and
standard deviation. The simulation results verify the efficiency of
the proposed algorithm. The multi-agent DSS is developed through
the Repast simulation platform and the constructed DSS can gen-
erate intercept plans automatically and support three-dimensional
dynamic display of missile defense process.

Keywords: agent-based modeling, missile defense system, de-
cision support system (DSS), variable neighborhood, negative
selection, particle swarm optimization (PSO).
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1. Introduction

Ballistic missile defense system (BMDS) is important for
its special role in ensuring national security and maintain-
ing strategic balance [1]. Due to the huge cost of develop-
ment, testing and employment of BMDS [2], establishing
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a BMDS simulation model beforehand is a practical
method before developing a real one which requires lots of
manpower and resources. BMDS is a typical complex sys-
tem for its nonlinear, adaptive and uncertainty characteris-
tics. The interactions between the elements of BMDS must
be considered to evaluate the effectiveness of the whole
BMDS.

Constructing a multi-layer missile defense system is an
inevitable trend for the future development of BMDS [3].
Lots of efforts have been done to evaluate the effective-
ness of BMDS [4]. Some scholars studied on the multi-
layer missile defense system which considers the combat
effectiveness and operational costs by using traditional de-
terministic modeling methods [5]. Others explored the use
of system engineering thinking [6,7] or the computational
experiments approach [8] to solve the complex BMDS mo-
deling and simulation problem.

Traditional modeling and simulation methods cannot re-
flect the inherent complexity of the complex adaptive sys-
tem [9]. The agent-based modeling method is a bottom-
up modeling method [10] which is suitable for complex
system research and various types of agent-based mo-
deling platforms have already been developed [11]. More
and more scholars begin to employ agent-based mode-
ling methods to complex system modeling [12] like trans-
portation system [13] and economic system [14]. Ibrahim
[15] et al. proposed a two layer hybrid agent architecture
for modeling and simulation of small military unit combat
in asymmetric warfare. Holland [16] et al. established a
BMDS kill chain model by using the agent-based mode-
ling method, quantitatively analyzed the interactions
among the BMDS and evaluated the uncertainty of the
kill chain. Christopher [17] et al. created an agent-based
BMDS model through system development framework
which integrates the human-in-the-loop decision maker
into the design. Connors [18] et al. designed an experi-
ment to simulate and analyze a new air-to-air missile which
yields useful insights about the complex interactions of dif-
ferent actors on the battlefield.
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All of these excellent works are trying to solve the prob-
lem of command and control of missile defense, but these
preliminary efforts did not realize the autonomous decision
making of BMDS. The decision making time for assigning
weapons to intercept offensive missiles is always restricted
to a few tens of minutes, which is a great challenge for
commanders. Constructing a missile defense decision sup-
port system (DDS) will greatly improve the effectiveness
of BMDS [19]. Tanerguclu [20] et al. developed a DSS to
determine the optimal positions for air defense weapons
and radars. Some scholars brought the optimization algo-
rithm into the DSS to provide more fast and reliable solu-
tions for missile defense missions. Li [21] et al. proposed a
modified particle swarm optimization (PSO) algorithm to
solve the problem of complex BMDS interceptor resource
planning.

This paper is organized as follows. The second sec-
tion discusses the agent-based BMDS DSS modeling and
the third section describes and analyzes the proposed im-
proved PSO algorithm. The fourth section describes the de-
sign and realization of missile defense DSS with the Repast
simulation platform. Conclusions are given in the last sec-
tion.

2. Agent-based BMDS DSS modeling

A typical missile defense mission process consists of a se-
ries of steps, including early warning, tracking and recog-
nition, command and control, and missile interception
which is achieved through the collaboration of BMDS
components. The early warning radar and tracking radar
are mainly made up of antenna, signal transmitter and re-
ceiver, signal processor and terminal devices. The func-
tion of the early warning radar is to obtain rough position
information about the offensive missile and provide early
warning information for the command center. The tracking
radar guides the intercept missile to accomplish the inter-
cept mission under the instruction from the command cen-
ter. The command center is mainly made up of commu-
nication link and information processing centers. Its func-
tions include estimating the offensive missile trajectory ac-
cording to early warning radar warning information, send-
ing guidance information to the tracking radar, generating
interception plan and issuing emission instruction to inter-
cept missile when the interception time is arrived. Inter-
cept missiles are made of booster rockets and warheads.
Its mission includes starting the interception mission when
receiving emission instruction, correcting trajectory under
the guidance information from tracking and recognition
radar during the interception process, performing terminal
guidance maneuver if reaching the terminal guidance dis-
tance. In order to achieve the closed-loop missile defense
simulation, the offensive missile is also needed.

2.1 Agent modeling

An agent is a concept first introduced in distributed artifi-
cial intelligence research [22] which is expected to solve
complex problems through negotiation between individu-
als. A typical agent is made up of sensor, controller and
actuator. The sensor is responsible for obtaining the envi-
ronment information within the perception range. The ac-
tuator is the execution composition of the agent which is
responsible for applying the agent feedback to the environ-
ment. The controller is the core of the agent which is made
of knowledge base, rule base and reasoning engine. The
structure of the agent is shown in Fig. 1.

Fig. 1 Structure of agent

The priori knowledge of the agent is stored in the know-
ledge base. The decision rules and selection preferences
are stored in the rule base. The agent can make choices
according to a logic statement or the output of a calcula-
tion model. Reasoning engine is the most important part
of the agent which achieves the reasoning and decision-
making mission. It works as follows: constructing the con-
straint model in accordance with the perception informa-
tion, selecting the most appropriate behavior based on the
priori knowledge and rule base. The reasoning engine of
the complex agent can integrate all kinds of complex input
information. Apart from the ability of reasoning using pri-
ori rules, it can also automatically correct or create rules
after training.

Taking the middle-course missile defense interception
as an example, the components of BMDS are modeled
using the agent-based modeling method which supports
the autonomous evolution of BMDS. The multi-agent mis-
sile defense DSS will generate the interception plan dyna-
mically which supports the computational experiments on
BMDS as well as the system-of-systems effectiveness eva-
luation and optimization. The agents in BMDS are shown
in Fig. 2.
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Fig. 2 Agents in BMDS

As shown above, agents in the same color indicate
that they have similar features. The primary agents in the
BMDS are missile agent, radar agent and command center
agent.

2.1.1 Command center agent

The command center agent achieves target weapon assign-
ment and sending missile launch instruction. Its knowledge
is shown in Table 1.

Table 1 Knowledge of command center agent

Property Value
Command center position Longitude, latitude, altitude
Intercept missile position Longitude, latitude, altitude

Intercept missile range angle Calculated by spherical geometry formula
Intercept missile launch time Calculated by the Lambert equation

Intercept missile fly time Calculated by the Lambert equation
Intercept probability Determined by the intercept missile

The rules of the command center agent include the
threat evaluation rule and the intercept missile selection
rule. The rules are supported by the decision-making
model described below.

(i) Weapon target assignment calculation model
This model achieves the intercept weapon assignment

which is the key factor to ensure the success of the inter-
ception mission. Before generating the intercept plans, all
related factors must be taken into consideration. These re-
lated factors include position, type and number of intercept
missiles, the threat level and the number of offensive mis-
siles, and the time when the threat is found. These consid-
ered factors will be integrated into an optimization objec-
tive function.

(ii) Expected intercept point calculation model
The expected intercept point is set to a point from the

trajectory of the offensive missile which is equal to the
maximum intercept height of the intercept missile. The tra-
jectory of the offensive missile is estimated by the cumu-
lative observational information from early warning and
tracking radar. The maximum intercept height of the inter-
cept missile is determined by the capacity of the intercept
missile.

(iii) Intercept missile launch time calculation model
According to the expected intercept point time, intercept

missile launch time TL can be calculated as follows:

TL = Te − Tf − Tp (1)

where Te denotes the time of expected intercept point, Tf

denotes the flight time of intercept missile which can be
calculated by Lambert equation, and Tp denotes the launch
preparation time of intercept missile.

(iv) Missile range angle calculation model
The range angle θf is calculated by the spherical

trigonometry formula according to the launch point and
the target point. Set the launch point as A, target point
as B, north pole as C, the three points and geocentric o
form a spherical triangle cone. The A, B, C represents
the angle between two facets while a, b, c represents the
geocentric angle between two points. After replacing vari-
ables in the formula with a = 90 − Tlat, b = 90 − Llat,
C = Tlon − Llon, we can obtain

cos c = cos(90 − Tlat) cos(90 − Llat)+

sin(90 − Tlat) sin(90 − Llat) cos(Tlon − Llon) (2)

where LLon and Llat represent the longitude and latitude
of the launch point while Tlon and Tlat represent the lon-
gitude and latitude of the target point. Finally we get the
range angle θf = arccos(cos c).

(v) Missile shutdown parameters calculation model
Setting geocentric as the origin of the coordinate sys-

tem, and the connection of geocentric and launch points
as the X axis, we can obtain a polar coordinate system.
According to Lambert equation [23], the missile shutdown
velocity Vs satisfies

Vs =

√
μ

|r1|
|r2|(1 − cos θf )

|r1| cos γ2 − |r2| cos(θf + γ) cos γ
(3)

where r1 and r2 are the launch point vector and the inter-
cept vector from geocentric, θf is the range angle which
can be obtained by θf = cos−1(r1 · r2/|r1||r2|). γ rep-
resents the trajectory inclination angle which can be ob-
tained by γ = (π − θf )/4 under minimum energy trajec-
tory. μ represents the gravity constant. Since the missile
flight trajectory is an ellipse, the missile flight time can be
calculated as follows:

tf =
|r1|

V cos γ
{ tanγ(1 − cos θf ) + (1 − λ) sin θf

(2 − λ)|r1|/|r2| +

2 cosγ

λ[(2/λ) − 1]
3
2

arctan
[(2/λ) − 1]

1
2

cos γ cot(θf/2) − sinγ
} (4)

where variable λ is determined by λ = |r1|V 2/μ. The
decision-making process of the command center is shown
below.

If Received warning information from radar
Then Execute threat evaluation
If Meets requirements of intercept mission

Then Execute weapon target assignment, cal-
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culate intercept missile launch time TL,
generate interception plan

If Meets launch conditions
Then Send launch instruction which in-

cludes offensive missile ID, inter-
cept missile ID, intercept missile
launch time TL, longitude, latitude
and altitude of the expected inter-
cept point

End If
End If

End If

2.1.2 Missile agent

The missile agent is the base class of the offensive mis-
sile and the intercept missile agent. The knowledge base
stores properties to support calculation of missile trajec-
tory which includes the position and velocity of the mis-
sile. Note that the properties of different missiles have dif-
ferent initial values.

The rules of the intercept missile include the missile
launch rule and the trajectory correction rule. The missile
launch rule is “if-then” judgment, e.g. the intercept mis-
sile will launch when receiving the launch instruction. The
trajectory correction rule consists of two sub-rules. One
sub-rule is revising its trajectory when the track cumula-
tive error exceeds the threshold value. The other one is
revising its trajectory by using the proportional guidance
law when the terminal guidance distance is arrived. The
decision-making process is shown below.

If Received launch instruction.
Then Calculate intercept missile range angle, esti-

mate shutdown velocity Vs and velocity incli-
nation angle
If Arrived launch time

Then Launch intercept missile and up-
date its velocity and position vector

End If
If The accumulated error between flight tra-

jectory and expected trajectory exceeds
the threshold
Then Receive guidance information

from tracking radar and execute tra-
jectory revision

End If
If Reached the terminal guidance distance

Then Revise its trajectory by using pro-
portional guidance law

End If
If Reached the effective damage distance or

miss the target
Then Intercept missile explosion

End If
End If

2.1.3 Radar agent

The radar agent is the base class of early warning radar
and tracking radar. Its function is providing early warn-
ing and guidance information for BMDS. The controller
of the radar agent is depicted below. The radar knowledge
base mainly stores properties that support the calculation
of the radar detection range and angle coverage. The rules
of radar include the target detection rule and the forecast
rule. The target detection rule calculates the radar detection
range through radar equation. The forecast rule reports the
warning information in case of finding offensive missile
three times in a row.

Assuming the missile is in the shape of cylindrical, its
radar cross section (RCS) can be calculated using the fol-
lowing equation according to the empirical formula.

RCS =
2πrh2

1

λ
+

2πrh2
2

λ
+

2πrh2
3

λ
+

8πr
9λh

(r2 +h2
0)

3
2 (5)

where r denotes the missile section radius, h denotes the
missile warhead length, and λ denotes the detection signal
wavelength. h1, h2, h3 denote the first stage, second stage
and third stage booster rockets respectively. h0 represents
the length of warhead. In fact, the RCS of the missile is also
related to the angle between the radar antenna and the ver-
tical direction of missile axial. Thus, the real value of RCS
σ can be obtained by σ = RCS ∗ cos θ, where θ repre-
sents the direction intersection angle between the radar an-
tenna and the missile axial. The maximum detection range
of radar can be calculated according to radar equation. The
decision-making process of radar agent is shown below.

If Radar initialization, which includes position and de-
tection parameters
Then Judge if the target lies in the radar detection

area
If Target lies in the radar detection coverage area

Then Calculate the radar effective detection
range Rmax by using radar equation

If Distance between the target and the radar
less than current radar detection range
Then Continue performing scan task
If Find target three times in a row

Then Report warning information
Else It is a false alarm, continue tracking

mission
End If

End If
End If

End If
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2.2 BMDS decision-making constraint model

Taking multi-layer missile defense as an example, we need
specific symbols to represent objects and variables which
support the subsequent modeling and description. Sym-
bols and definitions in the constraints model are listed in
Table 2.

Table 2 Symbols and definitions

Symbol Definition
m Total number of intercept missile
i Number of intercept missile, i ∈ {1, 2, 3, . . . , m}
n Total number of offensive missile
j Number of offensive missile, j ∈ {1, 2, 3, . . . , n}
Vi Cost of intercept missile i

Tj Threat of offensive missile j
Rj Responding time to intercept offensive missile j

Cj Commander intervention factor
Dj Distance from offensive missile to target
Sj Velocity constraint factor
Wk Weight factor

KPij
Intercept probability of intercept missile i to offensive mis-
sile j which satisfies 0 � KPij � 1

xij
Boolean variable which determines whether the intercept
missile i is selected to intercept offensive missile j

Note that the number of intercept is bigger than the
number of offensive missile. The main constraints in the
decision-making of BMDS are described below.

(i) Intercept and offensive missile constraint
In order to ensure the security of the defensive asset,

each offensive missile needs at least one intercept missile
to intercept. In order to maximize the interception effec-
tiveness, we should give priority to the offensive missile of
higher threat with a lower cost.

Fitness =

m∑
i=1

n∑
j=1

KPijxij · Tj

m∑
i=1

n∑
j=1

Vixij

. (6)

The threat of offensive missile j is represented by Tj ,
the intercept probability of offensive missile j is repre-
sented by KPij , the cost of intercept missile i is repre-
sented by Vi. The Boolean variable xij is set as 1 when
the intercept missile i is chosen to intercept offensive
missile j.

(ii) Response time brought by radar
The effectiveness of the intercept plan depends on the

detection and warning ability of the radar. The poor radar
detection ability will lead to limited response time. The
offensive missile which has short responding time has a
higher priority to be intercepted.

(iii) Commander intervention constraint
The intercept plan is also determined by the command

intervention. The command intervention factor is obtained

by instruction from superior commander or priori know-
ledge such as experience and intelligent information. The
offensive missile will be intercepted first which has a
higher commander intervention.

(iv) Offensive missile distance constraint
The distance from the offensive missile to defense assets

is also an important constraint factor. The intercept missile
will intercept the offensive missile which is near to the de-
fense assets.

(v) Offensive missile velocity constraint
The offensive missile is preferred to be intercepted when

its velocity is higher. Thus, the fitness function is updated
as follows:

Fitness =

m∑
i=1

n∑
j=1

KPijxij · (w1Tj) · (w2Sj) · (w3Cj)

m∑
i=1

n∑
j=1

(w4Vixij) · (w5Rj) · (w6Dj)

(7)

where xij is the Boolean variable which indicates whether
the intercept missile is used, Rj represents the response
time brought by radar detection capacity, S j represents
the velocity of the jth offensive missile, Cj represents the
commander intervention factor to the jth offensive missile,
Dj represent the distance from defensive assets to the jth
offensive missile.

In order to increase the adaptability and expansibility of
the proposed constraint model, let wk represent the weight
factor of each constraint factor and its initial value be equal
to one. Different missile defense missions lead to different
configurations of the weight factor.

3. Variable neighborhood negative selection
particle swarm optimization (VNNSPSO)
algorithm

The PSO algorithm is inspired from the biological group
behavior which was first proposed by Eberhart and
Kennedy [24] in 1995. PSO is initialized to a group of
random particles and the position and velocity of parti-
cles are updated during iterations. Each position repre-
sents a potential solution which has a specific fitness. The
moving velocity of particle is changing with its updat-
ing equation which decides the moving distance of parti-
cle in the search space. The current position of the parti-
cles constituted by n dimensional vector is described as
X = (X1, X2, . . . , Xn). The ith element of particle is de-
scribed as Xi = (xi1, xi2, . . . , xiD)T in the search space
S. The current velocity of the particle is described as V i =
(Vi1, Vi2, . . . , ViD)T. The individual best position is de-
scribed as Pi = (Pi1, Pi2, . . . , PiD)T while the global best
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position is represented by Pg = (Pg1, Pg2, . . . , PgD)T.
The individual fitness is determined by the constraint
model described in the earlier section. The individual and
global best fitness value will be updated until the termina-
tion condition is reached. The velocity and position of each
particle is updated by using the following equation.

V k+1
id = w · V k

id + c1r1(P k
id − Xk

id) + c2r2(P k
gd − Xk

id)

Xk+1
id = Xk

id + V k+1
id (8)

where w represents the inertia weight which plays the role
of balancing the individual and global search while super-
script k denotes the current iteration number. V id repre-
sents the d dimension velocity of particle i. r1 and r2 are
random numbers within range [0,1] and c 1 and c2 are non-
negative constant numbers called acceleration factors. In
order to avoid invalid searches, the position and velocity
of particle are restricted within the range [−Xmax, Xmax]
and [−Vmax, Vmax] respectively.

The fitness of the particle is calculated and updated dur-
ing the iteration of the proposed algorithm. The new fitness
value will be compared with current individuals and global
best values. Then, the individual and global best value will
be updated with the bigger one. When the iteration number
meets the maximum iteration number Tmax, the optimiza-
tion process finishes and the current global best value is the
solution of the proposed algorithm.

3.1 Algorithm design

(i) Particle encode
The missile defense can be described as choosing j mis-

siles from i intercept missiles to fulfill the intercept mis-
sion. In order to ensure the safety of the defensive asset,
each offensive missile needs to be intercepted at least by
one intercept missile. The coding rule is shown in Fig. 3
where the number of each missile is integer.

Fig. 3 Coding rule

In Fig. 3, Xj denotes the identification number of the
intercept missile.

(ii) Particle velocity and position update
In order to obtain the suitable missile number, we need

to take the integer part of the updated position. What’s

more, the newly generated position must have different
values within the range [1, 2, 3, . . . , i] for the reality that
one intercept missile can intercept only one offensive mis-
sile. The newly generated particle need to be modified to
make it a feasible solution. This can be realized by replac-
ing the duplicate elements in the newly generated position.

During the iteration process, the velocity of the particle
might go beyond the range. In that case, the newly gene-
rated velocity and position need to be revised using the fol-
lowing equation:

V k+1 =

⎧⎨
⎩

Vmax, V k+1 > Vmax

V k+1, Vmin � V k+1 � Vmax

Vmin, V k+1 < Vmin

(9)

Xk+1 =

⎧⎨
⎩

Xmax, Xk+1 > Xmax

Xk+1, Xmin � Xk+1 � Xmax

Xmin, Xk+1 < Xmin

(10)

where V k+1 represents the updated velocity obtained
from the velocity updating equation. The above-mentioned
equation shows that the velocity and position will be sub-
stituted by the boundary value when it is out of range. Note
that if the boundary value is already the element of the par-
ticle, a new element is generated which does not duplicate
with the existing elements. Xk+1 represents the updated
position obtained from the position updating equation. The
maximum velocity and position are set to Vmax = 8 and
Xmax = 16 in current operational scenario.

(iii) Inertia weight linearly decrease
In order to balance the exploration and exploitation of

the algorithm, the inertia weight will be set to decrease lin-
early with the iteration process as follows:

w = wend + (winitial − wend)(
Tmax − k

Tmax
) (11)

where winitial indicates the initial value of the inertia
weight and wend represents the end value during the itera-
tion process. Tmax represents the maximum iteration num-
ber and k indicates the iteration number of PSO.

(iv) Learning factor
c1 is the self-learning factor and c2 is the social learning

factor. In order to improve the exploring ability and ex-
ploitation ability of the PSO algorithm, the asynchronous
varying learning factors are designed as follows:{

c1 = c1min + (c1 max − c1min)(iter)/(itermax)
c2 = c2min + (c2 max − c2min)(iter)/(itermax)

(12)
where c1 and c2 indicate the learning factor, cmin and cmax

represent the minimum and maximum value of the learn-
ing factor, iter indicates the iteration number and itermax

indicates the maximum iteration number.
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(v) Constriction factor
In order to improve the convergence of the algorithm,

some scholars proposed the PSO with the constriction fac-
tor. The velocity update equation is updated as follows:

V k+1
id = K[V k

id + c1r1(P k
id − Xk

id) + c2r2(P k
gd − Xk

id)]
(13)

where K indicates the constriction factor and it is deter-
mined by K = 2/|2−ϕ−

√
ϕ2 − 4ϕ| and ϕ = c1+c2 > 4.

(vi) Variable neighborhood
In order to balance the exploration and the exploitation

ability of PSO, the variable neighborhood algorithm is pro-
posed to avoid getting into the local extreme. Its main idea
is to modify the particle’s neighborhood radius with the
iteration of the algorithm. The diversity of the algorithm
can be preserved by the adjustment of the neighborhood
radius. The velocity update equation can be revised as fol-
lows:

V k+1
id = wV k

id + c1r1(P k
id − Xk

id) + c2r2(P k
Nrd − Xk

id)]

(14)

where P k
id indicates the individual extreme value and P k

Nrd

represents the neighborhood extreme value. The subscript
of the neighborhood extreme is the neighborhood radius
Nr which is variable in the iteration process. Its value
ranges with the iteration number. In this paper, we take
a variable neighborhood strategy in the early stage of the
optimization algorithm.

(vii) Negative selection
Variable neighborhood will improve the ability to jump

out of the local extreme value to a certain extent and it
is difficult to achieve the desired convergence effect. Here
negative selection mechanism is proposed to maintain the
diversity of particles and improve the convergence of PSO.
This mechanism is derived from the theory of biological
immunity. Its main idea is to update partial particles in
proportion Pu when the algorithm converges. The con-
vergence of the algorithm is determined by whether the
affinity of the particles is bigger than the affinity thre-
shold Taff . The affinity of particle i in the d dimension
is determined by the following equation:

Aid = 1 − |Pgd − xid|/(Xmax − Xmin) (15)

where Aid is the affinity of particle i in the d dimension.
Pgd indicates the global extreme value and xid represents
the current value. Xmin and Xmax are the maximum and
minimum values of the variables. The affinity of particle i

is the average affinity of each dimension which is shown
as follows:

Ai =
1
D

D∑
d=1

Aid. (16)

The convergence of the algorithm is determined by
whether the affinity of all the particles is bigger than affini-
ty threshold Taff . The negative selection mechanism is
shown in Fig. 4.

Fig. 4 Negative selection process

The negative selection mechanism will be triggered
when all particle affinities are bigger than the affinity
threshold. Based on the above analysis, we propose the
VNNSPSO algorithm and its implementation process is
shown in Fig. 5.

Fig. 5 VNNSPSO algorithm
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The proposed VNNSPSO algorithm combines the ad-
vantage of variable neighborhood and negative selec-
tion mechanism. The variable neighborhood mechanism is
adopted in the early stage of the optimization algorithm
and negative selection mechanism is adopted in the middle
and later period of the algorithm. The proposed modified
PSO will enhance the diversity of the particles and avoid
falling into local extreme value.

3.2 Analysis and comparison

Set the number of iterations as 1 000, the initial particle
number as 200. The inertia weight is equal to 0.729 and
learning factors are equal to 1.494 45.

(i) Parameter sensitivity analysis
The main parameters of the proposed algorithm are

affinity threshold Taff and update ratio Pu. Let the affinity
threshold value vary from 0.91 to 0.99 and the update ratio
as 0.3, we can obtain the convergence rate with different
affinity thresholds, which is shown in Fig. 6.

Fig. 6 Convergence rate with different affinity thresholds

According to Fig. 6, the algorithm has a better conver-
gence rate when the affinity threshold is around 0.98 and
the update ratio is equal to 0.3. When the affinity threshold
is small, the algorithm is easy to get converged. The neg-
ative selection mechanism will make the particle swarm
update frequently which makes it difficult to converge to
the optimal solution. When the affinity threshold is big
enough, the algorithm has already fall into the local ex-
treme value.

Let the update ratio vary from 0.1 to 0.5 and the affinity
threshold as 0.98, we can obtain Fig. 7.

As we can see, the algorithm has a better convergence
rate when the update ratio is around 0.35. When the update
ratio is too small, it is hard to jump out of the local extreme
value. When the update ratio is too big, the optimization
result will fluctuate with the update operation and is hard
to converge to the optimal solution. The affinity threshold

and update ratio will set as 0.98 and 0.35 in the subsequent
study.

Fig. 7 Convergence rate with different update ratios

(ii) Algorithm convergence analysis
Let the convergence condition be 99.5% of the optimal

solution, the affinity threshold as 0.98 and the update pro-
portion as 0.35. After running 1 000 times, the convergence
rate of different versions of PSO is compared as shown in
Table 3.

Table 3 Convergence rate

Algorithm Convergence rate/%
Average convergence

iteration number
PSO 80.3 975

CFPSO 85.1 937
LDPSO 87.6 850
VNPSO 91.5 715

VNNSPSO 96.8 720

Table 3 shows that the standard PSO has the lowest con-
vergence rate and the proposed VNNSPSO algorithm has
the best convergence. The convergence of variable neigh-
borhood PSO (VNPSO) is better than construction factor
PSO (CFPSO) and linear decrease PSO (LDPSO) which
indicates that the variable neighborhood mechanism will
improve the diversity of particle swarm. The iteration num-
ber indicates that the proposed VNNSPSO can converge to
the optimal solution rapidly. The negative selection mecha-
nism makes the iteration number of VNNSPSO slightly
bigger than the VNPSO.

(iii) Algorithm consistency analysis
The average fitness and standard deviation of different

versions of PSO are depicted in Table 4.

Table 4 Average and standard deviation

Algorithm Average Standard deviation
PSO 6.845 2 0.268 9

CFPSO 6.818 3 0.238 6
LDPSO 6.720 5 0.171 1
VNPSO 6.674 0 0.291 4

VNNSPSO 6.539 4 0.313 1
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Note that the average fitness value is obtained by the fit-
ness before the algorithm converged. The data in Table 4
show that the improved PSO has lower average fitness
which means that the convergence velocity of the improved
PSO algorithm is fast. The LDPSO has the lowest standard
deviation since its weight is decreasing during the algo-
rithm iterative process. The standard deviation of VNPSO
and VNNPSO is bigger since its variable neighborhood
mechanism will enhance the variability of particle swarm.
The negative selection mechanism makes the standard de-
viation of VNNPSO slightly bigger than the VNPSO. The
negative selection mechanism will improve the ability to
jump out of the local extreme value.

4. DSS design and realization

4.1 Missile defense DSS framework

The DSS is a computer-based information system that
helps people make decisions on problems that may be
rapidly changing and not easily specified in advance. In
the BMDS case, the response time for missile defense in-
tercept is valuable and limited which is typically less than
ten minutes. To solve this dilemma, one of the feasible
methods is computing and generating interception plan au-
tomatically by DSS. The structure of the proposed DSS is
shown in Fig. 8.

Fig. 8 Framework of missile defense DSS system

Note that the blue arrows indicate the interactions
among agents while the green arrows indicate the inter-
nal information interaction of the command center agent.
The DSS is mainly made of offensive missile agent, radar
agent, intercept missile agent and command center agent
as shown in Fig. 8. The radar agent percepts the offensive
missile and provides warning and tracking information of
potential threats to the command center agent. The com-

mand center agent is the core of the DSS which composes
of a controller, a sensor and an actuator. The decision mak-
ing reasoning engine gets missile parameters from inter-
cept missile agent and executes decision reasoning under
the support of knowledge base and rule base. The modified
PSO algorithm is embedded into the reasoning engine of
the command center agent which supports the automatic
generation of the interception plan.

4.2 Realization of DSS

Lots of agent-based toolkits are developed to assist the de-
velopment of the agent-based system. The recursive porous
agent simulation toolkit (Repast) is a widely used, free and
open-source, cross-platform, agent-based modeling and
simulation toolkit which is developed by social comput-
ing research center at the University of Chicago. Agents
will be reserved and managed by the context provided by
Repast which can be regarded as an environment agent.

The whole missile defense system-of-systems consists
of middle-course interception system, terminal high alti-
tude interception system and terminal low altitude inter-
ception system which has sixteen intercept missiles. Each
defense layer has a certain number of intercept missiles
and different intercept missiles have different intercept
capabilities for different offensive missiles.

After embedding the modified PSO algorithm into the
reasoning engine of command center agent, we can estab-
lish the DSS of missile defense with the Repast platform
[25]. After calling and loading the NASA’s 3D world wind
model into the simulation system, the developed missile
defense DSS is shown in Fig. 9.

The running interface of DSS consists of control console
interface on the left side and the display interface on the
right side. The control console interface is used for para-
meter configuration which consists of run options, scenario
tree, parameters and user panel option box. In the right part
of the figure, the output figures are displayed while its title
is on the bottom of the figure.

Missile defense operational scenario is described as fol-
lows. There are three radars in the missile defense system
which has different detection abilities. The red star repre-
sents the defensive asset. The command center is deployed
around the defensive asset. For the convenience of descrip-
tion, we use the numerals 1st, 2nd, 3rd to indicate different
radars. The 1st radar locates near the defensive asset which
is represented by a yellow area. The 2nd radar locates in
the southeast of the defensive asset which is represented
by a green area. The 3rd radar locates in the northeast of
the defensive asset which is represented by a red coverage
area. Assume that there are eight ballistic missiles aiming
at defensive asset using minimum energy trajectory and the
eight orbits in color cyan represent the trajectory of offen-
sive missiles.
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Fig. 9 Missile defense decision support system running interface

4.3 Results and discussion

After initializing running parameters of the DSS simula-
tion system, including missile agent, radar agent, com-

mand center agent as well as the parameters of the mo-
dified PSO algorithm, we can obtain the following radar
detection range curves shown in Fig. 10.

Fig. 10 Radar detection range curves

The horizontal axis represents the simulation time and
the vertical axis represents the distance between the offen-
sive missile and radar. The figures from left to right rep-
resent the radar detection range curve of radars numbered
1st, 2nd, 3rd. The red curve represents the radar detection

range while the other eight curves represent the distance
from eight offensive missiles to the radar.

Table 5 shows the generated parameters to form the in-
terception plan.

Table 5 Generated parameters for missile defense

Time/s
First discovery time

of 1st radar/s
First discovery time

of 2nd radar/s
First discovery time

of 3rd radar/s
Intercept missile

shutdown velocity/(m/s)
Intercept missile

launch time/s
Intercept missile

flight time/s

1 814 0 0 520 923 133
2 815 0 0 851 827 219
3 888 0 0 1 240 754 316

Offensive 4 972 0 920 894 958 223
missile ID 5 1 745 – 1 249 1 434 1 402 338

6 1 874 – 1 378 748 1 752 159
7 1 931 – 1 409 749 1 880 154
8 2 018 – 1 521 1 255 1 766 263
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The first three columns in Table 5 are first discovery time
of offensive missile by radars. The number ‘0’ means that
the offensive missile will be detected since it was launched.
The symbol “ – ” means that the radar cannot detect the of-
fensive missile during its whole flight. The command cen-
ter agent will calculate the offensive missile trajectory and

the expected intercept point for intercept missile. After re-
ceiving the expected intercept point, the intercept missile
agent will calculate the missile launch parameters includ-
ing shutdown velocity, launch time and flight time. Finally,
the DSS will generate the interception plan as shown in
Fig. 11.

Fig. 11 Missile defense system interception plan

As shown in Fig. 11, the interception plan is constituted
by four types of elements which are offensive missile ID,
intercept missile ID, intercept missile launch time and ex-
pected intercept point. The plan gives the intercept missile
launch time and the expected intercept position which will
provide important reference information for the decision-
making of missile defense.

5. Conclusions

Missile defense DSS plays a decisive role on the effec-
tiveness of missile defense systems. The agent-based mo-
deling and simulation method can support the individual
characteristics modeling as well as the complex interac-
tions among agents which provide a new way for the au-
tonomous evolution of the complex system. This paper
establishes a multi-agent DSS for missile defense which
includes radar agent, missile agent, and command center
agent. The constraint model of missile defense is estab-
lished which takes the constraints brought by radar, in-
tercept missile, offensive missile and command interven-
tion into consideration. In order to realize the optimiza-
tion of the interception plan, the VNNSPSO is proposed
which combines the advantage of variable neighborhood
and negative selection mechanism. The proposed algo-
rithm is compared with the standard PSO, CFPSO, iner-
tia weight LDPSO, VNPSO algorithm from the aspects of
convergence rate, iteration number, average fitness value
and standard deviation. The simulation results verify the

efficiency of the proposed algorithm. A missile defense
DSS simulation system is designed and realized by us-
ing the Repast multi-agent simulation platform. The sim-
ulation results show that the DSS can achieve the three-
dimensional dynamic display of missile defense opera-
tional process and dynamic generation of the interception
plan. In a subsequent study, we will explore more intelli-
gent optimization algorithms and efficient organizational
structure of the multi-agent system to meet the require-
ments of large scale, multi-constrained coupling and real-
time missile defense problem.
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