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Abstract: A new Gaussian approximation nonlinear filter called
generalized cubature quadrature Kalman filter (GCQKEF) is intro-
duced for nonlinear dynamic systems. Based on standard GCQKF,
two extensions are developed, namely square root generalized cu-
bature quadrature Kalman filter (SR-GCQKF) and iterated general-
ized cubature quadrature Kalman filter (I-GCQKF). In SR-GCQKF,
the QR decomposition is exploited to alter the Cholesky decom-
position and both predicted and filtered error covariances have
been propagated in square root format to make sure the numerical
stability. In I-GCQKF, the measurement update step is executed
iteratively to make full use of the latest measurement and a new
terminal criterion is adopted to guarantee the increase of likeli-
hood. Detailed numerical experiments demonstrate the superior
performance on both tracking stability and estimation accuracy of
I-GCQKF and SR-GCQKF compared with GCQKF.
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1. Introduction

Nonlinear filtering or state estimation based on Bayesian
inference has been an active research area and has been
widely used in various fields, such as navigation, target
tracking, system identification, fault detection and isola-
tion, multi-source information fusion, statistic signal pro-
cessing, and econometrics [1-5]. Unlike the celebrated
Kalman filter [6], nonlinear filtering can rarely be ex-
pressed in close-form due to the existence of intractable
multivariable integrals, thus many researchers have to
abandon the idea of obtaining analytic solutions and tend
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to seek suboptimal solutions [7].

Two main approaches appear in literature to reach
sub-optimal solution [8], i.e., global approach and local
approach. A set of weighted particles are randomly se-
lected to approximate the propagation of possible density
functions (PDFs) in the global approach. Representative
cases in the global approximation are particle filter [9]
and grids point-mass filter [10]. Although filters in this ap-
proach have high precision, it is their computational bur-
den that makes them far from meeting the real time request
in the practical applications.

In local approximations, one intuitive scheme is to suc-
cessively linearize state process and observation mapping,
giving birth to the extended Kalman filter (EKF) [12].
However, its inherent deficiencies limit the estimation ac-
curacy. Another scheme is called the deterministic sam-
pling filter, in which a certain Gaussian PDF is selected
to approximate the non-Gaussian PDFs naturally caused
by the nonlinearity in some sense. Unscented Kalman fil-
ter (UKF) [13] and Gauss-Hermite quadrature Kalman fil-
ter (GHQF) [15] are well-known representatives of this
scheme.

Recently a kind of novel local-approach filter has
been developed which shares the same foundational the-
ories, namely, spherical radical cubature rule and Gauss-
Laguerre quadrature rule. The cubature Kalman filter
(CKF) [16] exploited the third degree spherical-radial cu-
bature rule, having better estimation results than UKF
while less computational burden than GHKF. Then for
further improving estimation accuracy, high-degree CKF
[17], cubature quadrature Kalman filter (CQKF) [18] and
high degree CQKF [19] have been proposed. In this pa-
per, we summarize the former work and derive the gener-
alized cubature quadrature Kalman filters (GCQKF). Two
parameters, i.e., degree of cubature rule and order of
quadrature rule, should be determined in GCQKF since
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different parameters lead to different filters.

All GCQKFs work well in ideal situations. However,
in real applications, some physical restrictions such as li-
mited computing length may lead to truncation error and
induce the loss of semi-positive character of the covari-
ance matrix, which may result in failure of filter tracking.
In addition, in some scenarios such a ballistic target trac-
king the significant initial error is inevitable and as a result,
the loss of tracking accuracy may arise. For sake of better
performance when dealing with real problems with large
initial error or limited computing length, we propose two
extensions of GCQKF, namely square root GCQKF (SR-
GCQKEF) and iterated GCQKF (I-GCQKF).

2. Derivations of GCQKF

In Bayesian filtering for discrete-time dynamical systems
(DDS), the posterior density, which provides complete
statistical information of state, can be calculated recur-
sively by two steps: prediction update and measurement
update, governed by the Chapman-Kolmogorov equation
and Bayes rule respectively [16]. Generally speaking, both
steps are intractable due to the involvement of multivariate
integrals. Under the assumption that all conditional PDFs
are Gaussian, the Bayesian filter is rendered tractable to
implement since all related integrals are turned to multi-
dimensional Gaussian weighted integrals. The general for-
mat of the Gaussian approximation filter can be found in
[14].

It is known that for arbitrary function f(x),z € R™,
the Gaussian-weighted integral

1 1 T —1
T - - —3(@—p) B (z—p)g
< E(%)"J e 5(”1)

can be expressed as

I(f) = —— JOOOL [f(@)ds(z)] e T dr (2)
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where p and X are the mean and covariance of a Gaussian
distribution p(x), respectively; € = Crz + p is an affine
transformation in which C' is the Cholesky decomposition
of 33; U, is the surface of a unit hypersphere definded by
U, = {z € R"zTz = 1}; s(2) is the area element on
U,. That is, the Gaussian-weighted integrals can be de-
composed into two tractable parts: a surface integral and a
line integral. The spherical cubature rule can be applied to
calculate the surface integral over a hyper-sphere and the
Gauss-Laguerre quadrature rule can be used to evaluate the
line integral.

2.1 Spherical cubaturerule

A variety of spherical cubature rules were introduced in
[20] to solve the surface integral and all those cubature

rules can be exploited to deal with surface integral in GC-
QKF. For definiteness and without loss of generality, we
here adopt the most commonly used cubature rule called
Genzs method, which was first proposed by Genz [21]
based on Silvesters integration rules [22].

For a surface integral Iy, (f) £ J f(s)do(s), it can

U’V‘L
be calculated numerically by the (2m + 1)th degree cuba-
ture rule as
Iu,(f) = Y wef{uc} (3)
|e]=m
where the cubature points set {u.} and corresponding
weight w,. are given by

{uC} = U {ﬂlucuﬂfucm e 7ﬂnucn}
n c¢;—1 52 — w2

=
i=1 j=0 e,

where ¢ is a set of non-negative numbers with ¢ =
n

[e1, €2, - ., ¢a] Which satisfies || = Y~ ¢; = m; 3; = +1
i=1
and u., = \/c;/m; the superscript o(u.) means the num-

ber of nonzero elements in u..
2.2 Gauss-Laguerrequadraturerule

Line integral from 0 to infinite can be approximated by the
generalized Gauss-Laguerre quadrature rule as

I(f) = J FON e A~ D wik; (4)
0 i
where the n,th order quadrature points A; (i = 1,...,n,)

are obtained by solving the following Chebyshey-Laguerre
polynomial equation

Ng

n _y d"
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and the corresponding weight for \; is determined as

g (3 = (-1
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2.3 Arbitrary cubaturequadraturerule

Using the spherical cubature rule and the Gauss-Laguerre
quadrature rule, the integral described in (2) can be evalu-
ated as

Ng ne

QWZZM%JC \/auj (5)

=1 j=1

where n. is the number of cubature points which is a func-
tion with respect to the degree of cubature rule and n 4 is
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the number of quadrature points which is the same as order
of quadrature rule. We name the new point set as cubature
quadrature point (CQ point). The complete algorithm to
generate CQ point is summarized as follows. Readers can
refer to [19] to find some examples about how to generate
CQ points and their weights.

Algorithm for CQ points generation

Step 1 Initialize the state dimension, degree of cuba-
ture rule and quadrature rule;

Step 2 Find the cubature point set {u ‘", w(®}7 ;

Step 3 Find the quadrature point set {A(®), w{}7 ;
Step 4 Obtain the CQ point set as {£;, wﬁf}}"“q where

j=11
o _ e
Neg = Nelgy &5 = V2N, W) = —= .
q q £] b q 2\/3'5_”

2.4 Implementation of GCQKF

Consider the following nonlinear DDS with additive noise:
{ xp = f(Tr—1) + Vi1 ©)
yr = h(zy) + wi

where x;, € R"™ is the state of interests at the time in-
stant k; f(-) and h(-) are some known nonlinear functions;
y € R™ is the measurement; ux_1 and wy are indepen-
dent Gaussian noise with zero means and covariance with
Q1 and Ry, respectively.

Before getting started, initialize the mean and covari-
ance for random variable x, to be &y, and Py, respec-
tively. Also the degree of cubature rule and quadrature rule
should be determined and corresponding CQ points should
be calculated as {¢;, w’)) jay

Prediction step Compute the Cholesky decomposition
Py 1y = Sk—l\k—lsg—uk—l and evaluate the cubature
quadrature points as x; = Sk_1jx-1&; + Tx—1jk—1- Up-
date the prediction density pyjx—1 = N (Zkjk—1, Prjr—1)
by

Tgjk—1 = ng)f(xﬂ
=1

Neq

G = ng)(f(xj) = 1) (f(x5) — jk\kfl)T

P11 =G+ Qr—1

()
Measurement update step  Compute the factoriza-
tion Py, = Sk“ﬂ_lsglkfl and set new CQ points

as xj = Skr—1&; + Zrr—1. Update filtering density
Prje = N (Tkjks Prje) bY

{ ik = Tujp—1 + Kr(yx — 1) ®)
Py = Pyj—1 — K Py K|

where

Neg

g =y Wi h(X})
j=1

Neg

Py =Y wl(h(x}) — 9u)(h(x}) — 5)" + Ri
j=1

Neq

i A ~ T
Poy =Y wld) () — &re—) (X)) — )
J=1

Ky = P,,P, .

The number of CQ points is an important design para-
meter for GCQKF because it affects the computational ef-
ficiency directly. The number of CQ points is proportional
to the order of quadrature rule while dramatically increa-
sing with the growth of degree of cubature rules. Hence
when designing the GCQKF, one should carefully choose
the degree of cubature rule and order of quadrature rule to
balance the estimation accuracy and computational burden.

3. Extensions of GCQKF
3.1 Squareroot GCQKF

As can be seen, the Cholesky decomposition is executed
twice in each recursion step in GCQKF. In the Cholesky
decomposition the matrix should be positively definited,
otherwise the filter would be unstable and divergent. In
general, however, the real applications may not meet the
demand due to the truncation error of digital computers. As
an alteration, orthogonal triangular decomposition, or QR
decomposition is a promising approach. In addition, using
the QR decomposition brings other benefits such as nu-
merical accuracy improvement and storage space decrease
[23].

In GCQKEF the error covariance P is defined as P =
XX7T, where X € R™*" for the predicted error co-
variance while X € R™*™<a for the filtered error covari-
ance. Apply the QR decomposition to X T, then we get
XT = QR, where Q € R"™«*" is an orthogonal matrix
and R € R"™«*" (or R € R™=*™) is an upper triangular
matrix. Hence P can be rewritten as

P=XXT"=R'QTQR=R'R=SS"

where S = R™. For brevity, we use uptria(X) to repre-
sent R in the QR decomposition for X.

Similarly, before starting filtering, we set the ini-
tial values &g and Pyo = So|050T|o- Then we calcu-
late the square root of noise covariance, i.e., Sq, =
VQy and Sk, = +/Ry. We also determine the CQ

points {¢&;,w) };<4 and the square weight matrix IT =

diag(\/wg), - \/wéf;“f)).
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Prediction step Obtain the cubature quadrature points
as xj = Sk—1|k—1&; +®x—1x—1 and update the prediction

Neq

mean &,y = Y w') f(x;)- Perform the QR decompo-
J=1
sition Syx—1 = uptria([ Xy k-1, Sq,_,]), where Xy,

is defined as Xy 1 = [f(x1) = k-1 5 f(X,,,)—
Epp o1 IT.

M easurement update step Evaluate the CQ points as
X; = Skjx—1&;+&xr—1. Calculate the predicted measure-

Necq

ment mean §;, = Zw (I h(x"), then update the filtered

mean and its correspondlng error covariance by
ik = Trjp—1 + Kr(yx — Jr)
Kk*( ry/s )/Syy
Skk = uptria([ Xy, — KpYii-1, KiSr,])  (9)
where
Y1 = [h(x1) — h(Xn.,)
Xppo1 = X1 = rjp—15- 5 Xpoy — Brjp—a | 1T
Syy = uptria([Yk‘k_l, Sr,.])
Py = Xl;|k—1Yka—1-

D=1+ -+ — Ypjp—1 | 1T

3.2 Iterated GCQKF

Inspired by the iterated EKF and the iterated UKF, we
modify the measurement update of GCQKF to make the
latest measurement fully exploited. We introduce the ma-
ximum likelihood based terminal criterion which can gua-
rantee the increase of likelihood [24]. In real applications,
the number of iteration [V is not too large, so the I-GCQKF
almost has the same computational complexity as GCQKF
does. Since I-GCQKEF has the same initial set up and pre-
diction step except determining a maximal iteration num-
ber N, we here focus on the measurement update step.
Measurement update step  Set :%gc(\)l)c = Rpp-1,
Pl -

to N. Compute the Cholesky decomposition P

Py, ;.1 and then go to the iteration loop fromi = 1

(i-1)
k|k

Sk|ksg‘k and evaluate CQ pointsas x; = Sk|k£j+.’f3](j|;1)
Update the filtering density at the ith iteration pj;, =
N(mk\k’ P:£|i) by

NORPNCE

Y4 Ki(yr — 9)

klk — Lrlk
pPY —pi-Y _ g P KT 10
k|k K|k ELyyg (10)

where

Neq

= w@n(x})
j=1

Neq

=> W@ (h(x})
j=1

i NONS
—gN((x) —9) + Ru

. z 1 ~ (2
chz; X — &, () - 91))
_ —1
K, =P,P, .
Calculate the terminal condition as

e(j)T(p(jfl)) e + eDTR; Tel) <

z k|k
el/"VTR; eli~ Y (11)
where
o =2, - ol
O

If the terminal condition holds or j exceeds the maximal
iteration number N, stop the iteration and set &, ;, = :ck‘;€

and Py, = Pk(fg

Akin to SR-GCQKEF, the QR decomposition can be uti-
lized in I-GCQKF to improve the numerical stability and
estimation accuracy. It is easy to derive and thus is not pro-

vided here due to the space limitations.
4. Numerical simulations and discussions

In this section, the proposed algorithms have been ap-
plied to solve two typical nonlinear estimation problems.
For convenience, in our notation, C,Q,KF is short for
GCQKEF in which the zth spherical cubature rule and
the yth Gauss-Laguerre quadrature rule are applied. Both
I-C,Q,KF and SR-C,Q,KF have the same meanings.

4.1 Singledimensional process

First introduced in [14], the single dimensional process has
been widely used to test the tracking stability of the Gaus-
sian approximation filters [18,19]. The plant model is given
as

T = Tr—1 + DAtrr_1(1 — xifl) + Vg1

Y = AtIk(l — 0.5Ik) + wg (12)

where vp—1 ~ N(0, o?At) and w, ~ N(0, B?At)
are the uncorrelated white Gaussian noise; At is the sam-
ple time. A time span from 0 to 2 s with the sample
time At = 0.1 s has been considered in our study. The
initial state and system parameters are set as: zo = —0.4,
Zojp = —0.8, Fyjo = 3, a = 0.6 and 8 = 0.2. This sys-
tem has three equilibrium points, the first one at the origin
and the other two at 1. The first one is unstable while
the other two are stable. The estimation error may force
the state estimation to converge to the wrong equilibrium
points, resulting in loss of tracking.
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For comparing the stability performance of the deli-
vered algorithms, we define a parameter called the percen-
tage fail count, which means the ratio between the num-
ber of loss tracking and the number of Monte Carlo runs.
The estimate error at the 2nd s is exploited as a criterion to
determine the loss tracking or not. If the absolute estimate
error at the 2nd s is more than one, we treat the filter as loss
of tracking; otherwise the filter does not. In this paper, we
execute 500 times of Monte Carlo runs. The percentage fail
counts for different filters are showed in Table 1. From the
table, we can see that square root algorithms are more sta-
ble than others and high order filters are more stable than
low order ones. The stability performance of iterated algo-
rithms is almost the same as that of the standard ones.

Table1l Percentage fail countsof different filters

Filter Fail count/% Filter Fail count/%
CsQuKE 8 SIRCS;? (i{}EF 35.38
GkF 3 g0 1o
CoaskF 28 || GO

4.2 Maneuvering target tracking

In this scenario, the maneuvering target tracking problem
has been used to validate the performance of the developed
algorithms. This is a benchmark problem which is widely
used to test the performance of the Gaussian approxima-
tion filters [14,16 —18]. The maneuvering target with un-
known turn rate is modeled as

b — 1
1 & 0
Wk Wk
0 bk 0 — Qg 0
T =g 1o be | o | =x+ve (13)
Wi WE
0 ag 0 bk 0
0 0 0 0 1

where x;, = [, a;,ﬂk,ﬁ;,wk]T is the state vector; ay =
sin(wiAt) and b, = cos(wyAt) are two turn rate related
terms; o, Bk are the position at time & in the  and y di-
rections respectively; [o'y, 3';.] denotes the corresponding
velocities and wy, is the turn rate which is unknown; At is
the sample time; the process noise iy, is the white Gaus-
sian noise with covariance Q. = diag[q1 M, ¢1 M, g2 At],
where M is defined as

_(A3/3 A2

B (AF /2 At ) '

The measurement is given by an active radar fixed at the
origin as

(Tk+1> _ \/m +mp (14)
Ort1 arctan (Bg41/k+1)

where ;1 is the white Gaussian measurement noise with
covariance Ry = diag[o?, 03] and it is also assumed to
be independent with the process noise k.

In the simulation, we use the following data: At = 15,
wo=-3°s"1, 1 =01m? 573, ¢ =1.75 x 104 g3,
o, = 10 m and o9 = /10 mrad. To illustrate the ef-
fectiveness of the delivered algorithms, the initial esti-
mate &) is randomly selected from N (&o; 0|0, Pojo),
where xo = [1 000,300,1 000,0,—-3] and Py, =
diag[100, 10, 100, 10, 0.1]. The simulations are executed
500 independent Monte Carlo runs in MATLAB in a com-
puter with AMD Dual-core 2.30 GHz processor under the
Windows 7 system.

We introduce the root mean square error (RMSE) as a
metric to evaluate the filtering performance and RMSE in
position is defined as

N
1 i NG i A
RMSE, 0 = ~ Z((a;) _ a,g))2 + (ﬂ;i) _ ﬁ’i))z)

where N is the number of Monto Carlo runs and [o g), ,(f)}
and [64,(;) ; B,(j)} denote the true and estimated values of po-
sitions at k instant in the ith Monte Carlo run respectively.
Similarly the RMSE in velocity and turn rate also can be
easily formulated.

The comparison of RMSE for different filters in position
and velocity can be founded in Fig. 1 and Fig. 2 respec-
tively. As can be seen, both I-GCQKF and SR-GCQKF
outperform the same order GCQKF. It also can be illus-
trated that the higher order filters perform better than the
lower order ones. However, no significant improvement is
noticed with much higher orders. The RMSE in turn rate
has the same trend. However, the results of distinct filters
are quite similar due to no information in measurement,
hence we do not show the RMSE in turn rate here.

—_
wn

RMSE/m
oy

11

1 5 9 13
Time/s

17 21 24

9 13
Time/s

17 21 24
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Fig.1 Comparisonsof RMSE for different filtersin position
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Fig.2 Comparisons of RM SE for different filtersin velocity

Computational time is also compared. The average exe-
cution time of the filters is showed in Table 2. As expected,
higher order GCQKFs take more time than lower ones be-
cause more cubature quadrature points are possessed in
higher order filters. When with the same order, square root
filters spend almost the same but slightly little time as stan-
dard ones, while iterated filters need more time.

Table2 Averagetime consuming in different filters

Filter Timels Filter Time/s
cxui 007 || N e
couirowes || RN ohs
CogeiF o4 || iSRG s

5. Conclusions

In this paper, the derivation of GCQKEF is introduced and
the square root and iterated extensions of GCQKF are pro-
posed. In lieu of applying the Cholesky decomposition, the
QR decomposition is adopted in square root extensions
at each iteration step, making the square root extensions
more stable especially when facing the short computational
length. In iterated extensions, the measurements are used
several times to totally use the measurement information.
Also a new terminal condition which guarantees the in-
crease of likelihood functions has been applied to end the
iterations.

Two numerical experiments are used to evaluate the per-
formance of the proposed filters. The numerical results
illustrate the superior performance of both iterated and
square root extensions. However, whether iterated exten-
sions outperform square root ones is problem-dependent,
which needs further study. With the increase of the degree
of cubature rule and order of quadrature rule, the number of
the sigma points grow drastically, hence some technologies
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such as marginalization which may decrease the numerical
burden should be further studied.
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