Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (5): 1046-1057.doi: 10.21629/JSEE.2018.05.15
收稿日期:
2017-01-18
出版日期:
2018-10-26
发布日期:
2018-11-14
Jingshuai HUANG1(), Hongbo ZHANG1,*(
), Guojian TANG1(
), Weimin BAO2(
)
Received:
2017-01-18
Online:
2018-10-26
Published:
2018-11-14
Contact:
Hongbo ZHANG
E-mail:hjs_nudt@126.com;zhanghb1304@ nudt.edu.cn;tangguojian@nudt.edu.cn;baoweimin@cashq.ac.cn
About author:
HUANG Jingshuai was born in 1993. He received his B.S. degree in aircraft design and engineering from Nanjing University of Aeronautics and Astronautics in 2013 and M.S. degree in aeronautical and astronautical science and technology form National University of Defense Technology in 2015, respectively. Now, he is a Ph.D. candidate in National University of Defense Technology. His research interests are in flight vehicle dynamics, intercept guidance and control. E-mail: . [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1046-1057.
Jingshuai HUANG, Hongbo ZHANG, Guojian TANG, Weimin BAO. Extended differential geometric guidance law for intercepting maneuvering targets[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1046-1057.
"
Number | Initial tm | Initial nm | r0ω0 |
A1 | (0.639 5, 0.754 3, 0.148 6) | (0.472 6, – 0.233 3, – 0.849 8) | 0.149 1 < 0.6 |
A2 | (0.589 5, 0.654 3, 0.473 7) | (0.609 9, 0.024 0, – 0.792 1) | 0.473 7 < 0.6 |
A3 | (0.500 5, 0.654 3, 0.566 9) | (0.706 7, 0.069 4, – 0.704 1) | 0.574 3 < 0.6 |
A4 | (0.499 5, 0.604 3, 0.620 7) | (0.631 0, 0.237 2, – 0.738 7) | 0.625 6>0.6 |
"
Number | EDGGL | MEDGGL | PPN | |||||
Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | |||
A1 | 0.893 7 | 453.609 0 | 2.045 8 | 678.697 6 | 1.358 4 | 571.554 3 | ||
A2 | 0.726 8 | 909.613 0 | 2.121 1 | 1 057.006 0 | 1.322 8 | 817.518 0 | ||
A3 | 0.561 2 | 846.764 7 | 3.326 3 | 1 133.879 1 | 1.342 0 | 914.926 9 | ||
A4 | 111.859 6 | 1 231.055 0 | 10.418 8 | 1 154.896 1 | 1.323 9 | 989.302 0 |
"
Number | Initial tm | Initial nm | r0ω0 |
B1 | (0.480 0, 0.870 3, 0.110 4) | (– 0.541 0, 0.392 7, – 0.743 7) | 0.111 0 < 0.285 7 |
B2 | (0.490 0, 0.848 0, 0.202 0) | (– 0.538 8, 0.476 8, – 0.694 6) | 0.205 1 < 0.285 7 |
B3 | (0.513 0, 0.820 3, 0.252 9) | (– 0.560 9, 0.543 3, – 0.624 7) | 0.262 6 < 0.285 7 |
B4 | (0.503 0, 0.810 3, 0.300 7) | (– 0.523 2, 0.562 4, – 0.640 4) | 0.310 0>0.285 7 |
"
Number | EDGGL | MEDGGL | PPN | |||||
Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | |||
B1 | 0.169 9 | 329.913 9 | 0.381 7 | 406.016 7 | 27.063 2 | 436.560 7 | ||
B2 | 0.160 5 | 804.178 1 | 0.276 9 | 804.918 2 | 228.857 0 | 766.148 4 | ||
B3 | 947.644 3 | 984.379 8 | 703.415 5 | 981.341 7 | 615.848 1 | 895.620 5 | ||
B4 | 1 922.640 0 | 991.853 5 | 1 537.572 4 | 990.479 6 | 1 089.664 4 | 941.525 8 |
1 | SHNEYDOR N A. Missile guidance and pursuit: kinematics, dynamics and control. Chichester: Horwood Publishing, 1998. |
2 |
SHUKLA U S, MAHAPATRA P R. The proportional navigation dilemma-pure or true. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26 (2): 382- 392.
doi: 10.1109/7.53445 |
3 |
YUAN P J, CHERN J S. Ideal proportional navigation. Journal of Guidance, Control, and Dynamics, 1992, 15 (5): 1161- 1165.
doi: 10.2514/3.20964 |
4 |
YANG C D, YANG C C. A unified approach to proportional navigation. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33 (2): 557- 567.
doi: 10.1109/7.575895 |
5 | ZARCHAN P. Tactical and strategic missile guidance. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2012, 163- 171. |
6 | CHEN L, ZHANG B. Novel TPN control algorithm for exoatmospheric intercept. Journal of Systems Engineering and Electronics, 2009, 20 (6): 1290- 1295. |
7 |
LI K B, ZHANG T T, CHEN L. Ideal proportional navigation for exoatmospheric interception. Chinese Journal of Aeronautics, 2013, 26 (4): 976- 985.
doi: 10.1016/j.cja.2013.06.007 |
8 |
CHO N, KIM Y. Modified pure proportional navigation guidance law for impact time control. Journal of Guidance, Control, and Dynamics, 2016, 39 (4): 852- 872.
doi: 10.2514/1.G001618 |
9 | STRUIK D J. Lectures on classical differential geometry. New York: Dover Publications, 1988. |
10 |
CHO N, KIM Y, PARK S. Three-dimensional nonlinear differential geometric path-following guidance law. Journal of Guidance, Control, and Dynamics, 2015, 38 (12): 2366- 2385.
doi: 10.2514/1.G001060 |
11 |
MENG Y H, CHEN Q F, NI Q. A new geometric guidance approach to spacecraft near-distance rendezvous problem. Acta Astronautica, 2016, 129, 374- 383.
doi: 10.1016/j.actaastro.2016.09.032 |
12 |
CHIOU Y C, KUO C Y. Geometric approach to threedimensional missile guidance problem. Journal of Guidance, Control, and Dynamics, 1998, 21 (2): 335- 341.
doi: 10.2514/2.4240 |
13 |
KUO C Y, CHIOU Y C. Geometric analysis of missile guidance command. IEE Proceedings-Control Theory and Applications, 2000, 147 (2): 205- 211.
doi: 10.1049/ip-cta:20000294 |
14 | KUO C Y, SOETANTO D, CHIOU Y C. Geometric analysis of flight control command for tactical missile guidance. IEEE Trans. on Control Systems Technology, 2001, 9 (2): 234- 243. |
15 | LI C Y, JING W X. New results on three-dimensional differential geometric guidance and control problem. Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006: AIAA 2006-6086. |
16 |
LI C Y, JING W X, WANG H, et al. Iterative solution to differential geometric guidance problem. Aircraft Engineering and Aerospace Technology, 2006, 78 (5): 415- 425.
doi: 10.1108/00022660610685800 |
17 |
LI C Y, JING W X. Application of PID controller to 2D differential geometric guidance problem. Journal of Control Theory and Applications, 2007, 5 (3): 285- 290.
doi: 10.1007/s11768-006-6109-9 |
18 | LI C Y, JING W X. Fuzzy PID controller for 2D differential geometric guidance and control problem. IET Control Theory and Applications, 2007, 1 (3): 564- 571. |
19 |
LI C Y, JING W X, WANG H, et al. Development of flight control system for 2D differential geometric guidance and control problem. Aircraft Engineering and Aerospace Technology, 2007, 79 (1): 60- 68.
doi: 10.1108/00022660710720502 |
20 |
LI C Y, JING W X, WANG H, et al. A novel approach to the 2D differential geometric guidance problem. Transactions of the Japan Society for Aeronautical and Space Sciences, 2007, 50 (167): 34- 40.
doi: 10.2322/tjsass.50.34 |
21 |
LI C Y, JING W X, WANG H, et al. Gain-varying guidance algorithm using differential geometric guidance command. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (2): 725- 736.
doi: 10.1109/TAES.2010.5461652 |
22 |
LI K B, CHEN L, BAI X Z. Differential geometric modeling of guidance problem for interceptors. Science China Technological Sciences, 2011, 54 (9): 2283- 2295.
doi: 10.1007/s11431-011-4451-8 |
23 |
LI K B, CHEN L, TANG G J. Improved differential geometric guidance commands for endoatmospheric interception of highspeed targets. Science China Technological Sciences, 2013, 56 (2): 518- 528.
doi: 10.1007/s11431-012-5087-z |
24 |
LI K B, CHEN L, TANG G J. Algebraic solution of differential geometric guidance command and time delay control. Science China Technological Sciences, 2015, 58 (3): 565- 573.
doi: 10.1007/s11431-014-5730-y |
25 |
YE J K, LEI H M, XUE D F, et al. Nonlinear differential geometric guidance for maneuvering target. Journal of Systems Engineering and Electronics, 2012, 23 (5): 752- 760.
doi: 10.1109/JSEE.2012.00092 |
26 |
MA Y W, ZHANG W H, LONG H. Intelligent guidance method based on differential geometric guidance command and fuzzy self-adaptive guidance law. Journal of Intelligent and Fuzzy Systems, 2015, 29 (6): 2527- 2536.
doi: 10.3233/IFS-151955 |
27 |
MA Y W, ZHANG W H. Differential geometric guidance command with finite time convergence using extended state observer. Journal of Central South University, 2016, 23 (4): 859- 868.
doi: 10.1007/s11771-016-3133-x |
28 |
ARIFF O, ZBIKOWSKI R, TSOURDOS A, et al. Differential geometric guidance based on the involute of the targetos trajectory. Journal of Guidance, Control, and Dynamics, 2005, 28 (5): 990- 996.
doi: 10.2514/1.11041 |
29 |
WHITE B A, ZBIKOWSKI R, TSOURDOS A. Direct intercept guidance using differential geometric concepts. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (3): 899- 919.
doi: 10.1109/TAES.2007.4383582 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||