Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1428-1440.doi: 10.23919/JSEE.2024.000096
• • 上一篇
收稿日期:
2023-01-03
出版日期:
2024-12-18
发布日期:
2025-01-14
Chuanfei ZANG1(), Yumiao WANG1(
), Xiang WANG1(
), Congan XU2,3(
), Guolong CUI1,*(
)
Received:
2023-01-03
Online:
2024-12-18
Published:
2025-01-14
Contact:
Guolong CUI
E-mail:zangcf2017@163.com;wangyumiao@std.uestc.edu.cn;w_xiang@std.uestc.edu.cn;xcatougao@163.com;cuiguolong@uestc.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1428-1440.
Chuanfei ZANG, Yumiao WANG, Xiang WANG, Congan XU, Guolong CUI. Sea clutter suppression via cuttable encoder-decoder-augmentation network[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1428-1440.
"
Block | |||
Encoder ResUblock-7 | 1 | 32 | 64 |
Encoder ResUblock-6 | 64 | 32 | 128 |
Encoder ResUblock-5 | 128 | 64 | 256 |
Encoder ResUblock-4 | 256 | 128 | 512 |
Encoder ResUblock-4D | 512 | 256 | 512 |
Decoder ResUblock-4D | 256 | 512 | |
Decoder ResUblock-4 | 128 | 256 | |
Decoder ResUblock-5 | 512 | 64 | 128 |
Decoder ResUblock-6 | 256 | 32 | 64 |
Decoder ResUblock-7 | 128 | 16 | 64 |
1 | CHEN X L, GUAN J, HUANG Y, et al Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion. IEEE Trans. on Geoscience and Remote Sensing, 2014, 53 (4): 2225- 2240. |
2 |
PAN M Y, SUN J, YANG Y H, et al M-FCN based sea-surface weak target detection. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1111- 1118.
doi: 10.23919/JSEE.2021.000095 |
3 |
XU C, HE Z S, LIU H C, et al Bayesian track-before-detect algorithm for nonstationary sea clutter. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1338- 1344.
doi: 10.23919/JSEE.2021.000113 |
4 | LI Y, ZHANG N, YANG Q Characteristic-knowledge-aided spectral detection of high frequency first-order sea echo. Journal of Systems Engineering and Electronics, 2009, 20 (4): 718- 725. |
5 | YANG W, ZHANG L, YANG L R, et al A general evaluation system for optimal selection performance of radar clutter model. Journal of Systems Engineering and Electronics, 2022, 34 (6): 1520- 1525. |
6 |
ZHU Y P, WEI Y S, TONG P First order sea clutter cross section for bistatic shipborne HFSWR. Journal of Systems Engineering and Electronics, 2017, 28 (4): 681- 689.
doi: 10.21629/JSEE.2017.04.07 |
7 |
SHEN X L, SONG Z Y, ZHU Y F, et al Fractal detector design and application in maritime target detection. Journal of Systems Engineering and Electronics, 2017, 28 (1): 27- 35.
doi: 10.21629/JSEE.2017.01.04 |
8 |
PAN M Y, SUN J, YANG Y H, et al Improved TQWT for marine moving target detection. Journal of Systems Engineering and Electronics, 2020, 31 (3): 470- 481.
doi: 10.23919/JSEE.2020.000029 |
9 | XU S W, MA Y T, BAI X H. Small target detection method in sea clutter based on interframe multi-feature iteration. Proc. of the IEEE 6th International Conference on Signal and Image Processing, 2021: 82–87. |
10 | ZHAO W J, JIN M L, CUI G L, et al Eigenvalues-based detector design for radar small floating target detection in sea clutter. IEEE Geoscience and Remote Sensing Letters, 2021, 19 (1): 1- 5. |
11 | XU S W, ZHENG J B, PU J, et al Sea-surface floating small target detection based on polarization features. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1505- 1509. |
12 | XUE J, XU S W, LIU J, et al Bayesian detection for radar targets in compound-gaussian sea clutter. IEEE Geoscience and Remote Sensing Letters, 2022, 19 (1): 4020805. |
13 | SUN Z, CHEN H X, LI X L, et al. Airborne radar coherent integration and sea-clutter suppression method for marine moving target via TSLRT-MFP-SVD. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 3724–3727. |
14 | CHEN X L, HUANG Y, GUAN J, et al. Sea clutter suppression and moving target detection method based on clutter map cancellation in FRFT domain. Proc. of the IEEE CIE International Conference on Radar, 2011: 438–441. |
15 | XUE J, MA M S, LIU J, et al Wald-and rao-based detection for maritime radar targets in sea clutter with lognormal texture. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60 (1): 1- 9. |
16 | XU S W, WANG Z X, BAI X H, et al Optimum and near-optimum coherent CFAR detection of radar targets in compound-gaussian clutter with generalized inverse Gaussian texture. IEEE Trans. on Aerospace and Electronic Systems, 2021, 58 (3): 1692- 1706. |
17 |
POON M W, KHAN R H, LE-NGOC S A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar. IEEE Trans. on Signal Processing, 1993, 41 (3): 1421- 1425.
doi: 10.1109/78.205747 |
18 | WANG Z T, WANG Y L, DUAN K Q, et al Subspace-augmented clutter suppression technique for STAP radar. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (3): 462- 466. |
19 | ZHOU G J, JIN Y G, DONG H C, et al HF radar sea clutter rejection by nonlinear projections. Journal of Systems Engineering and Electronics, 2005, 16 (4): 733- 737. |
20 | CHEN X L, GUAN J, BAO Z H, et al Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform. IEEE Trans. on Geoscience and Remote Sensing, 2013, 52 (2): 1002- 1018. |
21 | WANG X L, ABOUTANIOS E, AMIN M G. Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing. IET Radar, Sonar & Navigation, 2016, 10(4): 726–734. |
22 | FAN Y F, LI C X, LI D T, et al. A novel sea clutter suppression method based on neural network. Proc. of the IEEE 4th International Conference on Electronic Information and Communication Technology, 2021: 437–440. |
23 | NI Z K, SHI C, PAN J, et al Declutter-gan: GPR b-scan data clutter removal using conditional generative adversarial nets. IEEE Geoscience and Remote Sensing Letters, 2022, 19 (1): 4023105. |
24 |
ZHAO Z X, CHEN X, LI B, et al Range-Doppler spectrograms-based clutter suppression of HF passive bistatic radar by D-CycleGAN. IEEE Sensors Journal, 2021, 21 (22): 26006- 26013.
doi: 10.1109/JSEN.2021.3119747 |
25 | MOU X Q, CHEN X L, GUAN J, et al Sea clutter suppression for radar PPI images based on SCS-GAN. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (11): 1886- 1890. |
26 | PEI J F, YANG Y, WU Z B, et al A sea clutter suppression method based on machine learning approach for marine surveillance radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 (1): 3120- 3130. |
27 | QIAN L. Radar clutter suppression solution based on ICA. Proc. of the Fourth International Conference on Intelligent Systems Design and Engineering Applications, 2013: 429–432. |
28 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks. Proc. of the International Conference on Machine Learning, 2017: 214–223. |
29 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans. Proc. of the Advances in Neural Information Processing Systems, 2017: 30−45. |
30 | WANG Y M, ZHAO W J, WANG X, et al Nonhomogeneous sea clutter suppression using complex-valued U-Net model. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
31 | RONNEBERGER O, FISHER P, BROX T. U-net: convolutional networks for biomedical image segmentation. Proc. of the Medical Image Computing and Computer-Assisted Intervention, 2015: 234–241. |
32 |
STROGATZ S H Exploring complex networks. Nature, 2001, 410 (6825): 268- 276.
doi: 10.1038/35065725 |
33 | CHEN X L, YU X H, HUANG Y, et al Adaptive clutter suppression and detection algorithm for radar maneuvering target with high-order motions via sparse fractional ambiguity function. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13 (1): 1515- 1526. |
34 | YU J G, XIA G S, DENG J J, et al Small object detection in forward-looking infrared images with sea clutter using context-driven Bayesian saliency model. Infrared Physics & Technology, 2015, 73 (1): 175- 183. |
35 | ZHANG L, DAI J, LU H C, et al. A bi-directional message passing model for salient object detection. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1741–1750. |
36 | LU S J, LIM J H. Saliency modeling from image histograms. Proc. of the European Conference on Computer Vision, 2012: 321–332. |
37 | LONG J T, SHELLHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431–3440. |
38 | LIU N B, DING H, HUNAG Y, et al Annual progress of the sea-detecting X-band radar and data acquisition program. Journal of Radars, 2021, 10 (1): 173- 182. |
39 | LIU N B, DONG Y L, WANG G Q, et al Sea-detecting X-band radar and data acquisition program. Journal of Radars, 2019, 8 (5): 656- 667. |
40 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks. Proc. of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 249–256. |
41 | DIEDERIK P K. Adam: a method for stochastic optimization. Proc. of the International Conference on Learning Representations, 2015: 1–13. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||