| 1 |
NICKEL U Overview of generalized monopulse estimation. IEEE Aerospace and Electronic Systems Magazine, 2006, 21 (6): 27- 56.
doi: 10.1109/MAES.2006.1662039
|
| 2 |
JIANG L B, ZHENG S Y, YANG Q W, et al A modified OMP method for multi-orbit three dimensional ISAR imaging of the space target. Journal of Systems Engineering and Electronics, 2023, 34 (4): 879- 893.
doi: 10.23919/JSEE.2023.000066
|
| 3 |
WANG Y, ZHOU X Y, LU X F, et al An approach of motion compensation and ISAR imaging for micro-motion targets. Journal of Systems Engineering and Electronics, 2021, 32 (1): 68- 80.
doi: 10.23919/JSEE.2021.000008
|
| 4 |
WANG Y Y, DAI F Z, LIU Q, et al Sparse aperture autofocusing and imaging based on fast sparse bayesian learning from gapped data. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5101716.
|
| 5 |
JACOBS S P, SULLIVAN J A Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Trans. on Aerospace and Electtronic Systems, 2000, 36, 364- 381.
doi: 10.1109/7.845214
|
| 6 |
SU K Y, LIN G, WANG G Y, et al Noise-robust radar HRRP target sequential recognition based on correlative scattering centers. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 3505605.
|
| 7 |
DUAN J, MA Y, ZHANG L, et al Abnormal dynamic recognition of space targets from ISAR image sequences with SSAE-LSTM network. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5102916.
|
| 8 |
ZHOU Y J, XIE P F, LI C W, et al Automatic dynamic estimation of on-orbit satellites through spaceborne ISAR imaging. IEEE Trans. on Radar Systems, 2023, 1, 34- 47.
doi: 10.1109/TRS.2023.3267739
|
| 9 |
DAI Y, LIU D, LI C M, et al Robust dual-channel correlation algorithm for complex weak target detection with wideband radar. Journal of Systems Engineering and Electronics, 2023, 34 (5): 1130- 1146.
doi: 10.23919/JSEE.2023.000138
|
| 10 |
GONG S X, WEI X H, LI X, et al Mathematic principle of active jamming against wideband LFM radar. Journal of Systems Engineering and Electronics, 2015, 26 (1): 50- 60.
doi: 10.1109/JSEE.2015.00008
|
| 11 |
QI W, CUI Z J, YAO H S, et al High precision phase-domain radial velocity estimation for wideband radar systems. Journal of Systems Engineering and Electronics, 2020, 31 (3): 520- 526.
doi: 10.23919/JSEE.2020.000031
|
| 12 |
WEI S P, ZHANG L, LIU H W Integrated Kalman filter of accurate ranging and tracking with wideband radar. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (12): 8395- 8411.
doi: 10.1109/TGRS.2020.2987854
|
| 13 |
WEI S P, ZHANG L, LIU H W Integrated tracking and ISAR imaging using an integrated kalman filter with wideband radar. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (5): 4639- 4655.
doi: 10.1109/TAES.2022.3165006
|
| 14 |
XIONG X Y, DENG Z M, QI W, et al A novel high-precision range estimation method based on phase of wideband radar echo. IEEE Trans. on Geoscience and Remote Sensing, 2019, 6 (57): 3392- 3403.
|
| 15 |
MILSTEIN L Maximum-likelihood estimation of the angular position and extent of a target. IEEE Trans. on Information Theory, 1981, 27 (2): 187- 199.
doi: 10.1109/TIT.1981.1056330
|
| 16 |
MONAKOV A Maximum-likelihood estimation of parameters of an extended target in tracking monopulse radars. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (3): 2653- 2665.
doi: 10.1109/TAES.2012.6237615
|
| 17 |
MOSCA E Angle estimation in amplitude comparison monopulse systems. IEEE Trans. on Aerospace and Electtronic Systems, 1969, 5 (2): 205- 212.
|
| 18 |
MA J Z, SHI L F, LI Y Z, et al Angle estimation of extended targets in main-lobe interference with polarization filtering. IEEE Trans. on Aerospace and Electtronic Systems, 2017, 53 (1): 169- 189.
doi: 10.1109/TAES.2017.2649783
|
| 19 |
CHAUMETTE E, NICKEL U, LARZABAL P Detection and parameter estimation for extended targets using the generalized monopulse estimation. IEEE Trans. on Aerospace and Electtronic Systems, 2011, 47 (1): 381- 404.
doi: 10.1109/TAES.2011.5705682
|
| 20 |
LI W C, DAN M, LIU J, et al Radar monopulse tracking modeling and simulation of wideband range profile. Journal of System Simulation, 2009, 21 (15): 4732- 4735.
|
| 21 |
ZHAO H Z, HE S H. High resolution profile-based angular tracking technology for monopulse radar. Acta Electronica Sinica, 2000, 28(4): 142−144. (in Chinese)
|
| 22 |
LI Q, ZHANG S H, ZHANG H Y, et al Maximum entropy method for angle estimation in wideband monopulse tracking radar. Acta Electronica Sinica, 2006, 34 (12): 2180- 2184.
|
| 23 |
GAO L, XU R C, CHEN Z P A method for angle measurement on broadband mono-pulse radar. Electronics Optics & Control, 2011, 18 (10): 55- 58.
|
| 24 |
ZHANG Y X, LIU Q F, HONG R J, et al A novel monopulse angle estimation method for wideband LFM radars. Sensors, 2016, 16 (6): 817- 823.
doi: 10.3390/s16060817
|
| 25 |
XIONG X Y, DENG Z M, QI W, et al High-precision angle estimation based on phase ambiguity resolution for high resolution radars. Science China Information Science, 2019, 62 (4): 040307.
doi: 10.1007/s11432-018-9745-y
|
| 26 |
WANG H B, HUANG W H, JIANG Y, et al Maximum likelihood method and CRAMER-RAO low bound of angle estimation for wide-band monopulse radar. Progress in Electromagnetics Research C, 2018, 85, 209- 219.
doi: 10.2528/PIERC18042510
|
| 27 |
WANG J F, KASILINGAM D Global range alignment for ISAR. IEEE Trans. on Aerospace and Electronic and Electronic Systems, 2003, 39 (1): 351- 357.
doi: 10.1109/TAES.2003.1188917
|
| 28 |
DING J B, LI Y C, WANG J D, et al Joint motion compensation and distortion correction for maneuvering target bistatic ISAR imaging based on parametric minimum entropy optimization. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5118919.
|
| 29 |
YUAN Y X, LUO Y, KANG L, et al Range alignment in ISAR imaging based on deep recurrent neural network. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4022405.
|
| 30 |
CAI J J, MARTORRELLA M, CHANG S Q, et al Efficient nonparametric ISAR autofocus algorithm based on contrast maximization and Newton’s method. IEEE Sensors Journal, 2020, 21 (4): 4474- 4487.
|