| 1 |
YAN F G, SHEN Y, LIU S, et al Overview of efficient algorithms for super-resolution DOA estimates. Systems Engineering and Electronics, 2015, 37 (7): 1465- 1475.
|
| 2 |
LIU D P, ZHAO Y B, ZHANG T X Sparsity-based two-dimensional DOA estimation for co-prime planar array via enhanced matrix completion. Remote Sensing, 2022, 14 (19): 4690.
doi: 10.3390/rs14194690
|
| 3 |
LAU K H, NG C K, SONG J Low-complex single-snapshot DOA-estimation with higher degree of atomic separation-freedom in a MU-MIMO system aided by prior information. IEEE Signal Processing Letters, 2023, 30, 349- 353.
|
| 4 |
TANG W G, JIANG H, ZHANG Q, et al PSWF-based decoupled atomic norm minimization for DOD and DOA estimation in MIMO radar with arbitrary linear arrays. Signal Processing, 2023, 212, 109136.
doi: 10.1016/j.sigpro.2023.109136
|
| 5 |
ZHU H G, FENG W K, FENG C Q, et al Deep unfolded gridless DOA estimation networks based on atomic norm minimization. Remote Sensing, 2023, 15 (1): 13.
|
| 6 |
HE J, SHU T, LI L N, et al Mixed near-field and far-field localization and array calibration with partly calibrated arrays. IEEE Trans. on Signal Processing, 2022, 70, 2105- 2118.
doi: 10.1109/TSP.2022.3168975
|
| 7 |
RAMAMOHAN K N, CHEPURI S P, COMESANA D F, et al Self-calibration of acoustic scalar and vector sensor arrays. IEEE Trans. on Signal Processing, 2022, 71, 61- 75.
|
| 8 |
PAN C, BA X R, TANG Y H, et al Phased array antenna calibration method experimental validation and comparison. Electronics, 2023, 12 (3): 489.
doi: 10.3390/electronics12030489
|
| 9 |
LI J F, ZHANG Q T, DENG W M, et al Source direction finding and direct localization exploiting UAV array with unknown gain-phase errors. IEEE Internet of Things Journal, 2022, 9 (21): 21561- 21569.
doi: 10.1109/JIOT.2022.3181450
|
| 10 |
QI C, WANG Y Y, ZHANG Y G, et al DOA estimation and self-calibration algorithm for uniform circular array. Electronics Papers, 2005, 41 (20): 1092- 1094.
|
| 11 |
GUO Y D, HU X W, FENG W K, et al Low-complexity 2D DOA estimation and self-calibration for uniform rectangle array with gain-phase error. Remote Sensing, 2022, 14 (13): 3064.
doi: 10.3390/rs14133064
|
| 12 |
YANG P, HONG B, ZHOU W Theory and experiment of array calibration via real steering vector for high-precision DOA estimation. IEEE Antennas and Wireless Propagation Papers, 2022, 21 (8): 1678- 1682.
|
| 13 |
WANG K, YI J X, CHENG F, et al Array errors and antenna element patterns calibration based on uniform circular array. IEEE Antennas and Wireless Propagation Papers, 2021, 20 (6): 1063- 1067.
|
| 14 |
STEPHAN M, WANG K, REISSLAND T, et al. Evaluation of antenna calibration and DOA estimation algorithms for FMCW radars. Proc. of the 49th European Microwave Conference, 2019: 944−947.
|
| 15 |
LIU S Y, ZHANG Z, GUO Y 2-D DOA estimation with imperfect L-shaped array using active calibration. IEEE Communications Papers, 2020, 25 (4): 1178- 1182.
|
| 16 |
SHI W J, ZHU L D, ZHANG Y G G, et al. A DOA estimation method with high resolution in the presence of satellite array error. Proc. of the International Symposium on Networks, Computers and Communications, 2023. DOI: 10.1109/ISNCC58260.2023.10323867.
|
| 17 |
LIU J, ZHOU W D, HUANG D F, et al Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array. AEU-International Journal of Electronics and Communications, 2018, 84, 8- 12.
|
| 18 |
GREGOR K, LECUN Y. Learning fast approximations of sparse coding. Proc. of the 27th International Conference on International Conference on Machine Learning, 2010: 399−406.
|
| 19 |
ZHANG J, GHANEM B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1828−1837.
|
| 20 |
YANG C Z, GU Y T, CHEN B D, et al Learning proximal operator methods for nonconvex sparse recovery with theoretical guarantee. IEEE Trans. on Signal Processing, 2020, 68, 5244- 5259.
doi: 10.1109/TSP.2020.2978615
|
| 21 |
XIAO P, LIAO B, DELIGIANNIS N DeepFPC: a deep unfolded network for sparse signal recovery from 1-bit measurements with application to doa estimation. Signal Processing, 2020, 176, 107699.
doi: 10.1016/j.sigpro.2020.107699
|
| 22 |
SU X L, HU P H, LIU Z, et al Deep alternating projection networks for gridless DOA estimation with nested array. IEEE Signal Processing Letters, 2022, 29, 1589- 1593.
doi: 10.1109/LSP.2022.3188446
|
| 23 |
GUO Y Z, JIN J, WANG Q, et al Position-enabled complex toeplitz LISTA for DOA estimation with unknow mutual coupling. Signal Processing, 2022, 194, 108422.
doi: 10.1016/j.sigpro.2021.108422
|
| 24 |
YOUN J, RAVINDRAN S, WU R, et al. Circular convolutional learned ISTA for automotive radar DOA estimation. Proc. of the 19th European Radar Conference, 2022: 273−276.
|
| 25 |
TANG H Y, ZHANG Y C, LUO J W, et al. Sparse DOA estimation based on a deep unfolded network for MIMO radar. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2023: 5547−5550.
|
| 26 |
TROPP J A, GILBERT A C Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108
|
| 27 |
LIU F L, PENG L, WEI M G, et al An improved L1-SVD algorithm based on noise subspace for DOA estimation. Progress in Electromagnetics Research C, 2012, 29, 109- 122.
doi: 10.2528/PIERC12021203
|
| 28 |
CAO Z, ZHOU L, DAI J S Sparse Bayesian approach for DOD and DOA estimation with bistatic MIMO radar. IEEE Access, 2019, 7, 155335- 155346.
doi: 10.1109/ACCESS.2019.2949152
|
| 29 |
LIU H, ZHAO L M, LI Y, et al A sparse-based approach for DOA estimation and array calibration in uniform linear array. IEEE Sensors Journal, 2016, 16 (15): 6018- 6027.
doi: 10.1109/JSEN.2016.2577712
|
| 30 |
BOYD S, PARIKH N, CHU E. Distributed optimization and statistical learning via the alternating direction method of multipliers. Boston: Now Publishers Inc, 2011.
|