1 |
WILEY R. ELINT: the interception and analysis of radar signals. Boston: Artech, 2006.
|
2 |
KEN’ICHI N, MASAAKI K Improved algorithm for estimating pulse repetition intervals. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (2): 407- 421.
doi: 10.1109/7.845217
|
3 |
SONG K H, LEE D W, HAN J W, et al Pulse repetition interval modulation recognition using symbolization. Proc. of the International Conference on Digital Image Computing: Techniques and Applications, 2010, 540- 545.
|
4 |
WILLSON G B Radar classification using a neural network. Proc. of the Defense, Security and Sensing, 1990, 200- 210.
|
5 |
FAN T, YU X X, GAN N, et al Transmit-receive design for airborne radar with nonuniform pulse repetition intervals. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (6): 4067- 4084.
doi: 10.1109/TAES.2021.3090915
|
6 |
LI X Q, HUANG Z T, WANG F, et al Toward convolutional neural networks on pulse repetition interval modulation recognition. IEEE Communications Letters, 2018, 22 (11): 2286- 2289.
doi: 10.1109/LCOMM.2018.2864725
|
7 |
LI X Q, LIU Z M, HUANG Z T Attention-based radar primodulation recognition with recurrent neural networks. IEEE Access, 2020, 8, 57 426- 57 436.
doi: 10.1109/ACCESS.2020.2982654
|
8 |
QU Q Z, WEI S J, WU Y, et al ACSE networks and autocorrelation features for pri modulation recognition. IEEE Communications Letters, 2020, 24 (8): 1729- 1733, 2020.
doi: 10.1109/LCOMM.2020.2992266
|
9 |
DADGARNIA A, SADEGHI M T Automatic recognition of pulse repetition interval modulation using temporal convolutional network. IET Signal Processing, 2021, 15 (9): 633- 648.
doi: 10.1049/sil2.12069
|
10 |
FENG H C, TANG B, WAN T Radar pulse repetition interval modulation recognition with combined net and domain-adaptive few-shot learning. Digital Signal Processing, 2022, 127, 103562.
doi: 10.1016/j.dsp.2022.103562
|
11 |
PENG X B, ANDRYCHOWICZ M, ZAREMBA W, et al Sim-to-real transfer of robotic control with dynamics randomization. Proc. of the IEEE International Conference on Robotics and Automation, 2018, 3803- 3810.
|
12 |
KHIRODKAR R, YOO D, KITANI K Domain randomization for scene-specific car detection and pose estimation. Proc. of the IEEE Winter Conference on Applications of Computer Vision, 2019, 193- 1940.
|
13 |
BORLINO F, D’INNOCENTE A, TOMMASI T Domain generalization vs data augmentation: an unbiased perspective. Proc. of the European Conference on Computer Vision Workshops, 2020, : 726- 730.
|
14 |
LI P, LI D, LI W, et al A simple feature augmentation for domain generalization. Proc. of the IEEE/CVF International Conference on Computer Vision, 2021, 8866- 8875.
|
15 |
CHEN T L, BAKTASHMOTLAGH M, WANG Z J, et al Center-aware adversarial augmentation for single domain generalization. Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, 4146- 4154.
|
16 |
XU X, ZHOU X, VENKATESAN R, et al D-SNE: domain adaptation using stochastic neighborhood embedding. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, 2497- 2506.
|
17 |
QIAO F C, ZHAO L, PENG X Learning to learn single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 12556- 12565.
|
18 |
WAN C Q, SHEN X, ZHANG Y G, et al Meta convolutional neural networks for single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 4672- 4681.
|
19 |
CHEN J, GAO Z, WU X X, et al Meta-causal learning for single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, 7683- 7692.
|
20 |
KIM H, KANG Y, OH C, et al Single domain generalization for LiDAR semantic segmentation. Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, 17587- 17598.
|
21 |
ZHU W, LU L, XIAO J, et al Localized adversarial domain generalization. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, 7098- 7108.
|
22 |
ARJOVSKY M, BOTTOU L, GULRA-JANI I, et al. Invariant risk minimization. https://arxiv.org/abs/1907.02893.
|
23 |
LI L, GAO K, CAO J, et al Progressive domain expansion network for single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 224- 233.
|
24 |
WANG J D, LAN C L, LIU C, et al Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. on Knowledge and Data Engineering, 2022, 35 (8): 8052- 8072.
|
25 |
CHEN T, KORNBLITH S, NOROUZI M, et al A simple framework for contrastive learning of visual representations. Proc. of the International Conference on Machine Learning, 2020, 1597- 1607.
|
26 |
LEE K Prototypical contrastive predictive coding. Proc. of the Tenth International Conference on Learning Representations, 2022.
|
27 |
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need. Proc. of the Annual Conference on Neural Information Processing Systems, 2017, 5998- 6008.
|
28 |
GHORBEL E, GHORBEL M, M'HIRI S, et al Data augmentation based on invariant shape blending for deep learning classification. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2023, 1- 5.
|
29 |
ALJUNDI R, PATEL Y, SULC M, et al Contrastive classification and representation learning with probabilistic interpretation. Proc. of the Conference on Artificial Intelligence, 2023, 6675- 6683.
|
30 |
CHEN S, GONG C, LI J, et al Learning contrastive embedding in low-dimensional space. Proc. of the NeurIPS, 2022.
|