Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (4): 880-891.doi: 10.23919/JSEE.2025.000061
• • 上一篇
收稿日期:
2023-09-18
接受日期:
2024-07-30
出版日期:
2025-08-18
发布日期:
2025-09-04
Xuefen ZHU1,*(), Ang LI1(
), Yimei LUO1(
), Mengying LIN1(
), Gangyi TU2(
)
Received:
2023-09-18
Accepted:
2024-07-30
Online:
2025-08-18
Published:
2025-09-04
Contact:
Xuefen ZHU
E-mail:zhuxuefen@seu.edu.cn;angli@seu.edu.cn;luoyimei19970316@163.com;linmengying@seu.edu.cn;tugangyi@nuist.enu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2025, 36(4): 880-891.
Xuefen ZHU, Ang LI, Yimei LUO, Mengying LIN, Gangyi TU. A tracking algorithm based on adaptive Kalman filter with carrier-to-noise ratio estimation under solar radio bursts interference[J]. Journal of Systems Engineering and Electronics, 2025, 36(4): 880-891.
"
Error type | Statistics | First stage of the third scene | Second stage of the third scene |
Residual mean | Second-order PLL | ||
5 ms coherent integration second-order PLL | |||
KF | |||
Improved SHAKF | |||
AKF with | |||
Standard deviation | Second-order PLL | ||
5 ms coherent integration second-order PLL | |||
KF | |||
Improved SHAKF | |||
AKF with |
1 |
ZENG H C, DENG J D, WANG P W A spawning particle filter for defocused moving target detection in GNSS-based passive radar. Journal of Systems Engineering and Electronics, 2023, 34 (5): 1085- 1100.
doi: 10.23919/JSEE.2023.000033 |
2 |
NG Y, GAO G X GNSS multireceiver vector tracking. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (5): 2583- 2593.
doi: 10.1109/TAES.2017.2705338 |
3 | BILGEN B, INAL C. An open-source software for geodetic deformation analysis in GNSS networks. Earth Science Informatics, 2022, 15(3): 2051−2062. |
4 |
TRANQUILLA J Digital baseband processor for the GPS receiver modeling and simulations. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29 (4): 1343- 1349.
doi: 10.1109/7.259538 |
5 | JIN L, LV P, CUI X W, et al. Adaptive Kalman tracking algorithm for new generation GNSS signals. Journal of Tsinghua University (Science and Technology), 2012, 52(9): 1249−1254, 1259. (in Chinese) |
6 | DE PAULA E R, MARTINON A R F, CARRANO C, et al. Solar flare and radio burst effects on GNSS signals and the ionosphere during September 2017. Radio Science, 2022, 57(10): 1−15. |
7 | MCKEE S R, CILLIERS P J, LOTZ S, et al The effects of solar radio bursts on frequency bands utilised by the aviation industry in sub-Saharan Africa. Journal of Space Weather and Space Climate, 2023, 13 (1): 1- 11. |
8 |
KLOBUCHAR J A, KUNCHES J M, VANDIERENDONCK A J Eye on the ionosphere: potential solar radio burst effects on GPS signal to noise. GPS Solutions, 1999, 3 (2): 69- 71.
doi: 10.1007/PL00012794 |
9 |
SATO H, JAKOWSKI N, BERDERMANN J, et al Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies. Space Weather, 2019, 17 (6): 816- 826.
doi: 10.1029/2019SW002198 |
10 | BISWAS T, PAUL A Effects of the relative dynamics of ionospheric irregularities and GPS satellites on receiver tracking loop performance. Radio Science, 2023, 58 (10): 1- 16. |
11 | JING S, ZHAN X X, LIU B Y, et al. Weak and dynamic GNSS signal tracking strategies for flight missions in the space service volume. Sensors , 2016, 16(9): 1412. |
12 | SKONE S, LACHAPELLE G, YAO D, et al. Investigating the impact of ionospheric scintillation using a GPS software receiver. Proc. of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2005: 1126−1137. |
13 |
LEE J, MORTON Y T J, LEE J, et al Monitoring and mitigation of ionospheric anomalies for GNSS-Based safety critical systems: a review of up-to-date signal processing techniques. IEEE Signal Processing Magazine, 2017, 34 (5): 96- 110.
doi: 10.1109/MSP.2017.2716406 |
14 | WARD P W. Performance comparisons between FLL, PLL and a novel FLL-assisted-PLL carrier tracking loop under RF interference conditions. Proc. of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation, 1998: 783−795. |
15 |
CURRAN J T, LACHAPELLE G, MURPHY C C Improving the design of frequency lock loops for GNSS receivers. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 850- 868.
doi: 10.1109/TAES.2012.6129674 |
16 |
ZHANG H Y, XU L P, JIAN Y, et al A 2-step GPS carrier tracking loop for urban vehicle applications. Journal of Systems Engineering and Electronics, 2017, 28 (5): 817- 826.
doi: 10.21629/JSEE.2017.05.01 |
17 |
VILA-VALLS J, CLOSAS P, NAVARRO M, et al Are PLLs dead? A tutorial on Kalman filter-based techniques for digital carrier synchronization. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (7): 28- 45.
doi: 10.1109/MAES.2017.150260 |
18 | ZHANG Q L, XU W Q, ZHANG W W, et al Multi-hypothesis square-root cubature Kalman particle filter for speaker tracking in noisy and reverberant environments. IEEE/ACM Trans. on Audio Speech and Language Processing, 2020, 28, 1183- 1197. |
19 | SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics. Proc. of the Joint Automatic Control Conference, 1969: 760−769. |
20 | ZHENG Z, LIU S R, ZHANG B T. An improved Sage-Husa adaptive filtering algorithm. Proc. of the 31st Chinese Control Conference, 2012: 5113–5117. |
21 | ZHAI H Q, WANG L H. A SINS/CNS/GPS online calibration method based on improved Sage-Husa adaptive filtering algorithm. Proc. of the 8th International Conference on Automation, Robotics and Applications, 2022: 159–164. |
22 | HUANG W G, ERCHA A, SHEN H, et al Impact of intense L-band solar radio burst on GNSS performance and positioning accuracy. Chinese Journal of Radio Science, 2018, 33 (1): 1- 7. |
23 | KINTNER P M, O’HANLON B, GARY D E, et al Global positioning system and solar radio burst forensics. Radio Science, 2009, 44 (1): 1- 6. |
24 | CHAURASIYA S K, PATEL K, SINGH A K. Total electron content forecasting with neural networks during intense geomagnetic storms of the solar maximum and moderate years of solar cycle 24 in the low latitude Indian region. Astrophysics and Space Science, 2018, 368(9): 79. |
25 | DING X Y, WANG Q Design of carrier tracking loop based on adaptive strong tracking Sage-Husa Kalman filter. Electronics Optics & Control, 2019, 26 (10): 12- 16. |
26 | BALA B, LANZEROTTI L J, GARY D E, et al Noise in wireless systems produced by solar radio bursts. Radio Science, 2002, 37 (2): 1- 7. |
27 |
JIANG C, WANG S L, WU B, et al A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. Energy, 2021, 219, 119603.
doi: 10.1016/j.energy.2020.119603 |
28 | QIAO S H, FAN Y S, WANG G F, et al. Radar target tracking for unmanned surface vehicle based on square root Sage-Husa adaptive robust Kalman filter. Sensors, 2022, 22(8): 2924. |
29 | HUANG H Q, WU H, ZHANG S, et al An improved Sage-Husa adaptive Kalman filtering applied to cooperative navigation of autonomous underwater vehicles. Proc. of the IEEE International Symposium on Industrial Electronics, 2022, 570- 575. |
30 |
GUO Y J, YANG D Q, CHEN Z Z Object tracking on satellite videos: a correlation filter-based tracking method with trajectory correction by Kalman filter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (9): 3538- 3551.
doi: 10.1109/JSTARS.2019.2933488 |
31 |
WANG Q, SHANG F, DU L M, et al Influence of B1 code correlation loop for vector tracking structures under complicated environment. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1053- 1063.
doi: 10.21629/JSEE.2019.06.01 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||