1 |
ZHU Z, GUO F, YU H, et al. Fast single image superresolution via self-example learning and sparse representation. IEEE Trans. on Multimedia, 2014, 16 (8): 2178- 2190.
doi: 10.1109/TMM.2014.2364976
|
2 |
FU C H, CHEN H, ZHANG H, et al. Single image super resolution based on sparse representation and adaptive dictionary selection. Proc. of the 19th International Conference on Digital Signal Processing, 2014, 449- 453.
doi: 10.1109/ICDSP.2014.6900704
|
3 |
VILLENA S, VEGA M, BABACAN S D, et al. Bayesian combination of sparse and non-sparse priors in image super resolution. Digital Signal Processing, 2013, 23 (2): 530- 541.
|
4 |
HE L, QI H, ZARETZKI R. Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2013, 345- 352.
|
5 |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations. Proc. of the International Conference on Curves and Surfaces, 2012, 711- 730.
|
6 |
WANG S L, ZHANG L, LIANG Y, et al. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, 2216- 2223.
|
7 |
DONG W, ZHANG L, SHI G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. on Image Processing, 2011, 20 (7): 1838- 1857.
doi: 10.1109/TIP.2011.2108306
|
8 |
BABACAN S D, MOLINA R, KATSAGGELOS A K. Variational Bayesian super resolution. IEEE Trans. on Image Processing, 2011, 20 (4): 984- 999.
doi: 10.1109/TIP.2010.2080278
|
9 |
YANG J, WRIGHT J, HUANG T, et al. Image super-resolution via sparse representation. IEEE Trans. on Image Processing, 2010, 19 (11): 2861- 2873.
doi: 10.1109/TIP.2010.2050625
|
10 |
YANG J, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1- 8.
|
11 |
HE Y, YAP K H, CHEN L, et al. A nonlinear least square technique for simultaneous image registration and superresolution. IEEE Trans. on Image Processing, 2007, 16 (11): 2830- 2841.
doi: 10.1109/TIP.2007.908074
|
12 |
DAI S, HAN M, XU W, et al. Soft edge smoothness prior for alpha channel super resolution. Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007, 1- 8.
|
13 |
LI X, ORCHARD M T. New edge-directed interpolation. IEEE Trans. on Image Processing, 2001, 10 (10): 1521- 1527.
doi: 10.1109/83.951537
|
14 |
UR H, GROSS D. Improved resolution from subpixel shifted pictures. Cvgip Graphical Models & Image Processing, 1992, 54 (2): 181- 186.
|
15 |
KEYS R G. Cubic convolution interpolation for digital image processing. IEEE Trans. on Acoustics Speech & Signal Processing, 1982, 29 (6): 1153- 1160.
|
16 |
YANG C Y, YANG M H. Fast direct super-resolution by simple functions. Proc. of the IEEE International Conference on Computer Vision, 2013, 561- 568.
|
17 |
YANG J, LIN Z, COHEN S. Fast image super-resolution based on in-place example regression. Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2013, 1059- 1066.
|
18 |
YU J, GAO X, TAO D, et al. A unified learning framework for single image super-resolution. IEEE Trans. on Neural Networks & Learning Systems, 2014, 25 (4): 780- 792.
|
19 |
ZHU Y, ZHANG Y, YUILLE A L. Single image superresolution using deformable patches. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2917- 2924.
|
20 |
YEGANLI F, NAZZAL M, OZKARAMANLI H. Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness and gradient phase angle. Signal Image & Video Processing, 2015, 9 (1): 285- 293.
|
21 |
TRINH D H, LUONG M, DIBOS F, et al. Novel examplebased method for super-resolution and denoising of medical images. IEEE Trans. on Image Processing, 2014, 23 (4): 1882- 1895.
|
22 |
LIN D, TANG X. Coupled space learning of image style transformation. Proc. of the IEEE International Conference on Computer Vision, 2005, 2, 1699- 1706.
doi: 10.1109/ICCV.2005.65
|
23 |
KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2002, 24 (7): 881- 892.
|
24 |
LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms. Proc. of the Neural Information Processing Systems, 2007, 721- 728.
|
25 |
MOORE B. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. on Automatic Control, 1981, 26 (1): 17- 32.
|
26 |
ZHOU W, CONRAD B A, RAHIM S H, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Processing, 2004, 13 (4): 600- 612.
|