1 |
CRUZ C, MEHTA R, KATKOVNIK V, et al. Single image super-resolution based on wiener filter in similarity domain. IEEE Trans. on Image Processing, 2018, 27 (3): 1376- 1389.
doi: 10.1109/TIP.2017.2779265
|
2 |
ZHAO W, BIAN X F, HUANG F, et al. Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation. Journal of Systems Engineering and Electronics, 2018, 29 (3): 471- 482.
doi: 10.21629/JSEE.2018.03.04
|
3 |
SONG Q, XIONG R Q, LIU D, et al. Fast image super-resolution via local adaptive gradient field sharpening transform. IEEE Trans. on Image Processing, 2018, 21 (4): 1966- 1980.
|
4 |
PIACENZA P, SHERMAN S, CIOCARLIE M. Data-driven super-resolution on a tactile dome. IEEE Robotics and Automation Letters, 2018, 3 (3): 1434- 1441.
doi: 10.1109/LRA.2018.2800081
|
5 |
LIU D, WANG Z W, WEN B H, et al. Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. on Image Processing, 2016, 25 (7): 3194- 3207.
doi: 10.1109/TIP.2016.2564643
|
6 |
DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307.
doi: 10.1109/TPAMI.2015.2439281
|
7 |
YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation. IEEE Trans. on Image Processing, 2010, 19 (11): 2861- 2873.
doi: 10.1109/TIP.2010.2050625
|
8 |
XU Z G, LI W W, YUAN F X, et al. Super-resolution reconstruction based on l1/2 sparse regularization and multicomponent dictionaries. Systems Engineering and Electronics, 2018, 40 (3): 699- 703.
|
9 |
LIU J Y, YANG W H, ZHANG X F, et al. Retrieval compensated group structured sparsity for image super-resolution. IEEE Trans. on Multimedia, 2017, 19 (2): 302- 316.
doi: 10.1109/TMM.2016.2614427
|
10 |
ZHANG Y L, GU K Y, ZHANG Y B, et al. Image super-resolution based on dictionary learning and anchored neighborhood regression with mutual incoherence. Proc. of the IEEE International Conference on Image Processing, 2015, 591- 595.
|
11 |
TIMOFTE R, SMET V D, GOOL L V. A+: adjusted anchored neighborhood regression for fast super-resolution. Proc. of the Asian Conference on Computer Vision, 2014, 111- 126.
|
12 |
XU Y, YU L C, XU H T, et al. Vector sparse representation of color image using quaternion matrix analysis. IEEE Trans. on Image Processing, 2015, 24 (4): 1315- 1329.
doi: 10.1109/TIP.2015.2397314
|
13 |
YANG L, LIU Y G, HUANG R G, et al. New approach for super-resolution from a single color image based on sparse coding. Journal of Computer Applications, 2013, 33 (2): 472- 475.
doi: 10.3724/SP.J.1087.2013.00472
|
14 |
CHENG M, WANG C, LI J. Single-image super-resolution in rgb space via group sparse representation. IET Image Processing, 2015, 9 (6): 461- 467.
doi: 10.1049/iet-ipr.2014.0313
|
15 |
YANG M C, WANG Y C. A self-learning approach to single image super-resolution. IEEE Trans. on Multimedia, 2013, 15 (3): 498- 508.
doi: 10.1109/TMM.2012.2232646
|
16 |
XU J, CHANG Z G, FAN J L, et al. Super-resolution via adaptive combination of color channels. Multimedia Tools & Applications, 2017, 76 (1): 1553- 1584.
|
17 |
CAO W F, DUN J, XU Z B. Fast image deconvolution using closed-form thresholding formulas of $lq\ (q=12, 23)$ regularization. Journal of Visual Communication & Image Representation, 2013, 24 (1): 31- 41.
|
18 |
AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing, 2006, 54 (11): 4311- 4322.
doi: 10.1109/TSP.2006.881199
|
19 |
MOUSAVI H S, MONGA V. Sparsity-based color image super resolution via exploiting cross channel constraints. IEEE Trans. on Image Processing, 2017, 26 (11): 5094- 5106.
doi: 10.1109/TIP.2017.2704443
|
20 |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2 (1): 183- 202.
doi: 10.1137/080716542
|
21 |
DONG W S, ZHANG L, SHI G M, et al. Nonlocally centralized sparse representation for image restoration. IEEE Trans. on Image Processing, 2013, 22 (4): 1620- 1630.
|