| 1 | XU X, SHI Z W, PAN B L0-based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation . ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141, 46- 58. doi: 10.1016/j.isprsjprs.2018.04.008
 | 
																													
																						| 2 | LIU Y, GUO Y, LI F, et al Sparse dictionary learning for blind hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (4): 578- 582. doi: 10.1109/LGRS.2018.2878036
 | 
																													
																						| 3 | ZHONG Y F, WANG X Y, XU Y, et al Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications. IEEE Geoscience and Remote Sensing Magazine, 2018, 6 (4): 46- 62. doi: 10.1109/MGRS.2018.2867592
 | 
																													
																						| 4 | PAN B, SHI Z W, XU X, et al Coinnet: copy initialization network for multispectral imagery semantic segmentation. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (5): 816- 820. | 
																													
																						| 5 | TU B, LI N Y, FANG L Y, et al Hyperspectral image classification with a class-dependent spatial-spectral mixed metric. Pattern Recognition Letters, 2019, 123, 16- 22. doi: 10.1016/j.patrec.2019.02.025
 | 
																													
																						| 6 | MURPHY J M, JAMES M, MAGGION I, et al Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57 (3): 1829- 1845. | 
																													
																						| 7 | LI A L, QIN A Y, SHANG Z W, et al Spectral-spatial sparse subspace clustering based on three-dimensional edge-preserving filtering for hyperspectral image. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33 (3): 1955003. | 
																													
																						| 8 | ZOU Z X, SHI Z W Hierarchical suppression method for hyperspectral target detection. IEEE Trans. on Geoscience & Remote Sensing, 2015, 54 (1): 330- 342. | 
																													
																						| 9 | ZHU D H, DU B, ZHANG L P Target dictionary construction-based sparse representation hyperspectral target detection methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (4): 1254- 1264. doi: 10.1109/JSTARS.2019.2902430
 | 
																													
																						| 10 | XIE W Y, SHI Y Z, LI Y S, et al High-quality spectral-spatial reconstruction using saliency detection and deep feature enhancement. Pattern Recognition, 2019, (88): 139- 152. | 
																													
																						| 11 | JIAO C Z, CHEN C, MCGARVEY R G, et al Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 235- 250. doi: 10.1016/j.isprsjprs.2018.08.012
 | 
																													
																						| 12 | WU C, DU B, ZHANG L P Hyperspectral anomalous change detection based on joint sparse representation. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 137- 150. doi: 10.1016/j.isprsjprs.2018.09.005
 | 
																													
																						| 13 | LIU S C, BRUZZONE L, BOVOLO F, et al Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images. IEEE Trans. on Geoscience & Remote Sensing, 2016, 54 (5): 2733- 48. | 
																													
																						| 14 | NASCIMENTO J M B, DIAS J M B Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. on Geoscience & Remote Sensing, 2005, 43, 898- 910. | 
																													
																						| 15 | MIAO L D, QI H R Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. on Geoscience & Remote Sensing, 2007, 45 (3): 765- 77. | 
																													
																						| 16 | LI J, BIOUCAS-DIAS J M, PLAZA A, et al Robust collabo-rative nonnegative matrix factorization for hyperspectral unmixing (R-CoNMF). IEEE Trans. on Geoscience & Remote Sensing, 2016, 54 (10): 6076- 6090. | 
																													
																						| 17 | MIAO L D, QI H R, ZU H A maximum entropy approach to unsupervised mixed-pixel decomposition. IEEE Trans. on Image Processing, 2007, 16 (4): 1008- 1021. doi: 10.1109/TIP.2006.891350
 | 
																													
																						| 18 | QI L, LI J, GAO X B, et al A novel joint dictionary framework for sparse hyperspectral unmixing incorporating spectral library. Neurocomputing, 2019, 356, 97- 106. doi: 10.1016/j.neucom.2019.04.053
 | 
																													
																						| 19 | DRUMETZ L, MEYER T R, CHANUSSOT J, et al Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms. IEEE Trans. on Image Processing, 2019, 28 (7): 3435- 3450. doi: 10.1109/TIP.2019.2897254
 | 
																													
																						| 20 | YAO J, MENG D Y, ZHAO Q, et al Nonconvex-sparsity and nonlocal-smoothness based blind hyperspectral unmixing. IEEE Trans. on Image Processing, 2019, 28 (6): 2991- 3006. doi: 10.1109/TIP.2019.2893068
 | 
																													
																						| 21 | ZHANG X R, SUN Y J, ZHANG J Y, et al Hyperspectral unmixing via deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1755- 1759. doi: 10.1109/LGRS.2018.2857804
 | 
																													
																						| 22 | SU Y C, LI J, PLAZA A, et al DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57 (7): 4309- 4321. | 
																													
																						| 23 | SONG X R, WU L D, HAO H X Blind hyperspectral sparse unmixing based on online dictionary learning. Proc. of the International Society for Optics and Photonics-Image and Signal Processing for Remote Sensing XXIV, 2018, 107890K. | 
																													
																						| 24 | SONG X R, WU L D. A novel hyperspectral endmember extraction algorithm based on online robust dictionary learning, Remote Sensing, 2019, 11: 1792. | 
																													
																						| 25 | QU Y, QI H R uDAS: an untied denoising autoencoder with sparsity for spectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57, 1698- 1712. | 
																													
																						| 26 | PAN Q H, KONG D G, DING C, et al Robust non-negative dictionary learning. Proc. of the 28th AAAI Conference on Artificial Intelligence, 2014, 2027- 2032. | 
																													
																						| 27 | IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2012, 50 (11): 4484- 4502. | 
																													
																						| 28 | BIOUCAS-DIAS J M, NASCIMENTO J M P Hyperspectral subspace identification. IEEE Trans. on Geoscience & Remote Sensing, 2008, 46 (8): 2435- 2445. | 
																													
																						| 29 | SU Y C, LI J, ANTONIO P, et al DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, (7): 1- 13. | 
																													
																						| 30 | WANG Y, PAN C H, XIANG S M, et al Robust hyperspectral unmixing with correntropy-based metric. IEEE Trans. on Image Processing, 2015, 24 (11): 4027- 4040. doi: 10.1109/TIP.2015.2456508
 |