Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (4): 997-1009.doi: 10.23919/JSEE.2022.000096
收稿日期:2020-11-30
									
				
									
				
											接受日期:2022-03-29
									
				
											出版日期:2022-08-30
									
				
											发布日期:2022-08-30
									
			
        
               		Naikang YU1,2(
), Bin QIAN2,3,*(
), Rong HU2,3(
), Yuwang CHEN4(
), Ling WANG5(
)
			  
			
			
			
                
        
    
Received:2020-11-30
									
				
									
				
											Accepted:2022-03-29
									
				
											Online:2022-08-30
									
				
											Published:2022-08-30
									
			Contact:
					Bin QIAN   
											E-mail:nk_yu2020@foxmail.com;bin.qian@vip.163.com;ronghu@vip.163.com;Yu-wang.chen@mbs.ac.uk;wangling@tsinghua.edu.cn
												About author:Supported by:. [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 997-1009.
Naikang YU, Bin QIAN, Rong HU, Yuwang CHEN, Ling WANG. Solving open vehicle problem with time window by hybrid column generation algorithm[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 997-1009.
"
| Symbol | Description of symbol | 
|   |  Decision variable: if the vehicle  |  
|   |  Decision variable: if customer  vehicle  |  
|   |  The time of vehicle arrives at customer  |  
|   |  The waiting time of vehicle to arrive at customer  |  
|   |  Customer node  |  
|   |  Vehicle node  |  
|   |  Total number of vehicles | 
|   |  Total number of customers | 
|   |  Maximum vehicle capacity | 
|   |  Distance from customer  |  
|   |  Time from customer  |  
|   |  Demand of customer  |  
|   |  Time window of customer  |  
|   |  The earliest time that customer  |  
|   |  The latest time that customer  |  
|   |  Service time of customer  |  
"
| Instance | n | opt | SA | MA | HCGA | |||||||||
| ub | Gap/% | Time/s | ub | Gap/% | Time/s | ub | Gap/% | addcolumn | Time/s | |||||
| C101 | 25 | 191.3 | 194.18 | 1.51 | 1.00 | 198.9 | 3.97 | 6.55 | 191.4 | 0.05 | 1351 | 1.31 | ||
| 50 | 362.4 | 489.08 | 34.96 | 1.50 | 448.9 | 23.87 | 14.77 | 363.24 | 0.23 | 3280 | 8.85 | |||
| 100 | 827.3 | 866.16 | 4.70 | 1.11 | 1104.8 | 33.54 | 27.82 | 828.94 | 0.20 | 11188 | 78.35 | |||
| C102  |  25 | 190.3 | 192.36 | 1.08 | 1.05 | 256.1 | 34.58 | 6.78 | 190.3 | 0.00 | 5516 | 22.82 | ||
| 50 | 361.4 | 539.43 | 49.26 | 1.06 | 574.8 | 59.05 | 14.35 | 362.17 | 0.21 | 14705 | 24.27 | |||
| 100 | 827.3 | 994.56 | 20.22 | 1.11 | 1317.4 | 59.24 | 28.73 | 828.93 | 0.20 | 90644 | 4138 | |||
| C105  |  25 | 191.3 | 196.81 | 2.88 | 1.06 | 202.4 | 5.80 | 6.53 | 191.3 | 0.00 | 1835 | 1.47 | ||
| 50 | 362.4 | 472.3 | 30.33 | 2.13 | 435.6 | 20.20 | 12.22 | 363.24 | 0.23 | 5291 | 9.37 | |||
| 100 | 827.3 | 830.67 | 0.41 | 3.13 | 1288.5 | 55.75 | 28.83 | 828.93 | 0.20 | 15398 | 19.59 | |||
| C106  |  25 | 191.3 | 195.71 | 2.31 | 1.06 | 214.4 | 12.08 | 6.4 | 191.8 | 0.26 | 1542 | 1.32 | ||
| 50 | 362.4 | 497.13 | 37.18 | 2.17 | 450.6 | 24.34 | 12.33 | 363.24 | 0.23 | 4184 | 11.27 | |||
| 100 | 827.3 | 945.36 | 14.27 | 2.12 | 1194.2 | 44.35 | 27.96 | 828.93 | 0.20 | 49817 | 210.7 | |||
| C201 | 25 | 214.7 | 219.82 | 2.38 | 1.05 | 255.7 | 19.10 | 6.42 | 215.54 | 0.39 | 4303 | 3.64 | ||
| 50 | 360.2 | 598.24 | 66.09 | 1.09 | 413.7 | 14.85 | 13.52 | 361.79 | 0.44 | 18633 | 13.27 | |||
| 100 | 589.1 | 762.6 | 29.45 | 2.26 | 1038.9 | 76.35 | 27.87 | 591.56 | 0.42 | 122465 | 268.01 | |||
| R101  |  25 | 617.1 | 772.38 | 25.16 | 0.10 | 656.9 | 6.45 | 6.86 | 618.32 | 0.20 | 171 | 0.10 | ||
| 50 | 1044 | 1044 | 0.00 | 1.10 | 1344.5 | 28.78 | 13.52 | 1046.70 | 0.26 | 839 | 0.50 | |||
| R102  |  25 | 547.1 | 764.68 | 39.77 | 1.24 | 590.1 | 7.86 | 6.98 | 547.40 | 0.05 | 556 | 0.45 | ||
| 50 | 909 | 972 | 6.93 | 2.87 | 936.72 | 3.05 | 15.25 | 911.44 | 0.27 | 2930 | 3.98 | |||
| R103  |  25 | 454.6 | 454.6 | 0.00 | 1.45 | 470.8 | 3.56 | 7.28 | 455.69 | 0.24 | 1500 | 1.60 | ||
| 50 | 772.9 | 795.02 | 2.86 | 2.81 | 832.5 | 7.71 | 13.14 | 771.9 | * | 8591 | 17.82 | |||
| R104  |  25 | 416.9 | 417.89 | 0.24 | 0.49 | 490.3 | 17.61 | 7.57 | 417.96 | 0.25 | 1797 | 4.69 | ||
| 50 | 625.4 | 752.32 | 20.29 | 1.04 | 1091.4 | 74.51 | 16.79 | ? | ? | ? | ? | |||
| R105 | 25 | 530.5 | 533.72 | 0.61 | 0.54 | 534.6 | 0.77 | 7.02 | 531.53 | 0.19 | 407 | 0.13 | ||
| 50 | 899.3 | 901.57 | 0.25 | 1.77 | 901.07 | 0.20 | 13.17 | ? | ? | ? | ? | |||
| RC101  |  25 | 461.1 | 494.01 | 7.14 | 1.59 | 461.1 | 0.00 | 6.57 | 409.24 | * | 621 | 0.67 | ||
| 50 | 944 | 944 | 0.00 | 2.63 | 1078.4 | 14.24 | 12.79 | ? | ? | ? | ? | |||
| RC103  |  25 | 332.8 | 337.41 | 1.39 | 1.43 | 543.7 | 63.37 | 6.97 | 333.91 | 0.33 | 6933 | 25.52 | ||
| 50 | 822.5 | 822.5 | 0.00 | 2.05 | 1168.9 | 42.12 | 13.22 | 647.36 | * | 24232 | 572.67 | |||
| RC105 | 25 | 411.3 | 419.56 | 2.01 | 1.49 | 417.1 | 1.41 | 6.63 | 412.37 | 0.26 | 1611 | 1.88 | ||
| 50 | 855.3 | 915.12 | 6.99 | 2.87 | 994.97 | 16.32 | 12.59 | 763.42 | * | 5301 | 8.3 | |||
"
| Instance | Scale |   |    |    |    |    |    |  
| C501 | 5 | 3.24 | 0.46 | 3.24 | 0.012 | 0.00 | |
| Small | 10 | 5.72 | 2.95 | 5.72 | 0.026 | 0.00 | |
| 15 | 14.33 | 12.58 | 14.73 | 0.11 | 2.79 | ||
| 20 | 21.20 | 51.87 | 21.20 | 0.377 | 0.00 | ||
| 25 | 36.46 | 68.03 | 36.46 | 1.07 | 0.00 | ||
| Medium | 30 | 48.17 | 63.25 | 49.5 | 2.16 | 2.76 | |
| 35 | 70.12 | 59.17 | 70.655 | 3.47 | 0.76 | ||
| 40 | 81.59 | 125.49 | 81.657 | 5.78 | 0.08 | ||
| Large | 45 | 103.98 | 242.82 | 104.77 | 13.21 | 0.76 | |
| 50 | 119.24 | 644.77 | 119.24 | 13.8 | 0.00 | ||
| C502 | 5 | 12.8 | 0.64 | 12.8 | 0.013 | 0.00 | |
| Small | 10 | 40.19 | 2.15 | 40.19 | 0.019 | 0.00 | |
| 15 | 60.52 | 14.56 | 60.52 | 0.027 | 0.00 | ||
| 20 | 62.05 | 30.62 | 62.93 | 0.128 | 1.42 | ||
| 25 | 69.11 | 103.79 | 70.28 | 0.216 | 1.69 | ||
| Medium | 30 | 81.02 | 89.21 | 81.91 | 0.562 | 1.10 | |
| 35 | 85.34 | 144.93 | 86.22 | 1.08 | 1.03 | ||
| 40 | 89.99 | 201.01 | 91.67 | 2.17 | 1.87 | ||
| Large | 45 | 96.8 | 396.54 | 101.86 | 2.48 | 5.23 | |
| 50 | 111.07 | 365.71 | 116.41 | 3.61 | 4.81 | ||
| 5 | 10.31 | 0.45 | 10.68 | 0.009 | 3.59 | ||
| C503 | Small | 10 | 18.52 | 1.7 | 19.37 | 0.0169 | 4.59 | 
| 15 | 32.35 | 8.07 | 33.3 | 0.0319 | 2.94 | ||
| 20 | 58.86 | 49.42 | 61.08 | 0.055 | 3.77 | ||
| 25 | 106.66 | 88.58 | 107.63 | 0.147 | 0.91 | ||
| Medium | 30 | 142.37 | 56.83 | 146.84 | 0.339 | 3.14 | |
| 35 | 179.33 | 103.35 | 189.02 | 0.97 | 5.40 | ||
| 40 | 209.95 | 179.48 | 220.9 | 1.47 | 5.22 | ||
| Large | 45 | 227.32 | 282.85 | 241.25 | 1.61 | 6.13 | |
| 50 | 234.75 | 1228.245 | 251.38 | 2.69 | 7.08 | 
| 1 |  
											 DANTZIG G B, RAMSER J H The truck dispatching problem. Management Science, 1959, 6 (1): 80- 91. 
											 												 doi: 10.1287/mnsc.6.1.80  | 
										
| 2 |  
											 BRANDAO J A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 2004, 157 (3): 552- 564. 
											 												 doi: 10.1016/S0377-2217(03)00238-8  | 
										
| 3 |  
											 FLESZAR K, OSMAN I H, HINDI K S A variable neighbourhood search algorithm for the open vehicle routing problem. European Journal of Operational Research, 2009, 195 (3): 803- 809. 
											 												 doi: 10.1016/j.ejor.2007.06.064  | 
										
| 4 |  
											 LOZANO L, DUQUE D, MEDAGLIA A L An exact algorithm for the elementary shortest path problem with resource constraints. Transportation Science, 2016, 50 (1): 348- 357. 
											 												 doi: 10.1287/trsc.2014.0582  | 
										
| 5 | SCHRAGE L Formulation and structure of more complex/realistic routing and scheduling problems. Networks, 2010, 11 (2): 229- 232. | 
| 6 |  
											 SARIKLIS D, POWELL S A heuristic method for the open vehicle routing problem. Journal of the Operational Research Society, 2000, 51 (5): 564- 573. 
											 												 doi: 10.1057/palgrave.jors.2600924  | 
										
| 7 |  
											 SCHOPKA K, KOPFER H An adaptive large neighborhood search for the reverse open vehicle routing problem with time windows. Logistics Management, 2016, 163 (1): 243- 257. 
											 												 doi: 10.1007/978-3-319-20863-3_18  | 
										
| 8 | GE J H, XIOMG Y, WANG H Z An improved TS for the open vehicle routing problem with soft time windows. Proc. of the IEEE 5th International Symposium on Computational Intelligence & Design, 2013, 382- 385. | 
| 9 |  
											 REPOUSSIS P P, IOANNOU C D T The open vehicle routing problem with time windows. Journal of the Operational Research Society, 2007, 58 (3): 355- 367. 
											 												 doi: 10.1057/palgrave.jors.2602143  | 
										
| 10 |  
											 FORD L R, FULKERSON D R A suggested computation for maximal multi-commodity network flows. Management Science, 1958, 5 (1): 97- 101. 
											 												 doi: 10.1287/mnsc.5.1.97  | 
										
| 11 |  
											 CHEN Z L, POWELL W B A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem. European Journal of Operational Research, 1999, 116 (1): 220- 232. 
											 												 doi: 10.1016/S0377-2217(98)00136-2  | 
										
| 12 | FEI H, MESKENS N, CHU C A planning and scheduling problem for an operating theatre using an open scheduling strategy. Computers & Industrial Engineering, 2010, 58 (2): 221- 230. | 
| 13 |  
											 VANCE P H, BARNHART C, JOHNSON E L, et al Solving binary cutting stock problems by column generation and branch-and-bound. Computational Optimization and Applications, 1994, 3 (2): 111- 130. 
											 												 doi: 10.1007/BF01300970  | 
										
| 14 |  
											 CACCHIANI V, HEMMELMAYR V C, TRICOIRE F A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discrete Applied Mathematics, 2014, 163, 53- 64. 
											 												 doi: 10.1016/j.dam.2012.08.032  | 
										
| 15 | QURESHI A G, TANIGUCHI E, YAMADA T An exact solution approach for vehicle routing and scheduling problems with soft time windows. Transportation Research Part E: Logistics & Transportation Review, 2009, 45 (6): 960- 977. | 
| 16 |  
											 YUAN Y, CATTARUZZA D, OGIER M, et al A column generation based heuristic for the generalized vehicle routing problem with time windows. Transportation Research Part E: Logistics and Transportation Review, 2021, 152 (8): 102391. 
											 												 doi: 10.1016/j.tre.2021.102391  | 
										
| 17 |  
											 BEHNKE M, KIRSCHSTEIN T, BIERWIRTH C A column generation approach for an emission-oriented vehicle routing problem on a multigraph. European Journal of Operational Research, 2021, 288 (3): 794- 809. 
											 												 doi: 10.1016/j.ejor.2020.06.035  | 
										
| 18 |  
											 BOLAND N, DETHRIDGE J, DUMITRESCU I Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Operations Research Letters, 2006, 34 (1): 58- 68. 
											 												 doi: 10.1016/j.orl.2004.11.011  | 
										
| 19 | BERTSEKAS D P A simple and fast label correcting algorithm for shortest paths. Networks, 2010, 23 (8): 703- 709. | 
| 20 |  
											 OZBAYGIN G, KARASAN O E, SAVELSBERGH M, et al A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations. Transportation Research Part B: Methodological, 2017, 100 (6): 115- 137. 
											 												 doi: 10.1016/j.trb.2017.02.003  | 
										
| 21 |  
											 LI C S, GONG L J, LUO Z X, et al A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing. Omega, 2019, 89 (12): 71- 91. 
											 												 doi: 10.1016/j.omega.2018.09.014  | 
										
| 22 |  
											 TIMO G, STEFAN I, ANN-KATHRIN R, et al Bidirectional labeling in column-generation algorithms for pickup-and-delivery problems. European Journal of Operational Research, 2018, 266 (2): 521- 530. 
											 												 doi: 10.1016/j.ejor.2017.09.035  | 
										
| 23 |  
											 RIGHINI G, SALANI M Symmetry helps: bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 2006, 3 (3): 255- 273. 
											 												 doi: 10.1016/j.disopt.2006.05.007  | 
										
| 24 | RIGHINI G, SALANI M New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks, 2010, 51 (3): 155- 170. | 
| 25 | KE L J, GUO H M, ZHANG Q F A cooperative approach between metaheuristic and branch-and-price for the team orienteering problem with time windows. Proc. of the IEEE Congress on Evolutionary Computation, 2014, 1878- 1882. | 
| 26 |  
											 ROMAN V, ANTONIN N, PREMYSL S, et al Accelerating the branch-and-price algorithm using machine learning. European Journal of Operational Research, 2018, 271 (3): 1055- 1069. 
											 												 doi: 10.1016/j.ejor.2018.05.046  | 
										
| 27 | SALARI M, TOTH P, TRAMONTANI A An ILP improvement procedure for the open vehicle routing problem. Computers & Operations Research, 2010, 37 (12): 2106- 2120. | 
| 28 | SHEN Y D, PENG L W, LI J P An improved estimation of distribution algorithm for multi-compartment electric vehicle routing problem. Journal of Systems Engineering and Electronics, 2021, 32 (2): 365- 379. | 
| 29 | MAJID Y, AZAM D, FARZAD D, et al. A modified column generation to solve the heterogeneous fixed fleet open vehicle routing problem. Journal of Engineering, 2016. DOI: 10.1155/2016/5692792. | 
| 30 | FAIZ T I, VOGIATZIS C, NOOR-E-ALAM M A column generation algorithm for vehicle scheduling and routing problems. Computers & Industrial Engineering, 2019, 130, 222- 236. | 
| 31 | CUI H J, LUO X C, WANG Y Scheduling of steelmaking-continuous casting process using deflected surrogate Lagrangian relaxation approach and DC algorithm. Computers & Industrial Engineering, 2020, 140 (2): 106271. | 
| 32 |  
											 BINATO S, PEREIRA M V F, GRANVILLE S A new benders decomposition approach to solve power transmission network design problems. IEEE Trans. on Power Systems, 2001, 16 (2): 235- 240. 
											 												 doi: 10.1109/59.918292  | 
										
| 33 |  
											 BALINSKI M L, QUANDT R E On an integer program for a delivery problem. Operations Research, 1964, 12 (2): 187- 376. 
											 												 doi: 10.1287/opre.12.2.187  | 
										
| 34 |  
											 DROR M Note on the complexity of the shortest path models for column generation in VRPTW. Operations Research, 1994, 42 (5): 977- 978. 
											 												 doi: 10.1287/opre.42.5.977  | 
										
| 35 | KENNEDY J, EBERHART R Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks, 1995, 1942- 1948. | 
| 36 |  
											 TAVAKKOLI-MOGHADDAM R, GAZANFARI M, ALINAGHIAN M, et al A new mathematical model for a competitive vehicle routing problem with time windows solved by simulated annealing. Journal of Manufacturing Systems, 2011, 30 (2): 83- 92. 
											 												 doi: 10.1016/j.jmsy.2011.04.005  | 
										
| 37 |  
											 SABAR N R, BHASKAR A, CHUNG E, et al An adaptive memetic approach for heterogeneous vehicle routing problems with two-dimensional loading constraints. Swarm and Evolutionary Computation, 2020, 58, 100730. 
											 												 doi: 10.1016/j.swevo.2020.100730  | 
										
| No related articles found! | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||