| 1 |
SHEN H X, CASALINO L Revisit of the three-dimensional orbital pursuit-evasion game. Journal of Guidance, Control and Dynamics, 2018, 41 (8): 1820- 1828.
|
| 2 |
LI Z Y, ZHU H, YANG Z, et al A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion. Acta Astronautica, 2019, 163, 201- 210.
doi: 10.1016/j.actaastro.2019.01.011
|
| 3 |
LI Z Y, ZHU H, YANG Z, et al Saddle point of orbital pursuit-evasion game under J2-perturbed dynamics . Journal of Guidance, Control and Dynamics, 2020, 43 (9): 1733- 1739.
doi: 10.2514/1.G004459
|
| 4 |
ISAACS R. Differential games. New York: Wiley, 1965.
|
| 5 |
LUO Y Z, LI Z Y, ZHU H Survey on spacecraft orbital pursuit-evasion differential games. Scientia Sinica Technologica, 2020, 50 (12): 1533- 1545.
doi: 10.1360/SST-2019-0174
|
| 6 |
CHENG L, WANG Z B, JIANG F H, et al Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (5): 2436- 2450.
doi: 10.1109/TAES.2018.2889571
|
| 7 |
WU Q C, LI B, LI J, et al Solution of infinite time domain spacecraft pursuit strategy based on deep neural network. Aerospace Control, 2019, 37 (6): 13- 18,58.
|
| 8 |
GEORGE B C. Optimal and robust neural network controllers for proximal spacecraft maneuvers. Dayton: Air Force Institute of Technology, 2019.
|
| 9 |
ZENG X, ZHU Y W, YANG L P, et al A guidance method for coplanar orbital interception based on reinforcement learning. Journal of Systems Engineering and Electronics, 2021, 32 (4): 927- 938.
doi: 10.23919/JSEE.2021.000079
|
| 10 |
YIN S S, LI J, CHENG L Low-thrust spacecraft trajectory optimization via a DNN-based method. Advances in Space Research, 2020, 66 (7): 1635- 1646.
doi: 10.1016/j.asr.2020.05.046
|
| 11 |
YAO Q M, WANG M S, CHEN Y Q, et al. Taking human out of learning applications: a survey on automated machine learning. https://arxiv.org/abs/1810.13306v4.
|
| 12 |
FRANK H, LARS K, JOAQUIN V. Automated machine learning methods, systems, challenges. Berlin: Springer, 2019.
|
| 13 |
YU T, ZHU H. Hyper-parameter optimization: a review of algorithms and applications. https://arxiv.org/abs/2003.05689v1.
|
| 14 |
WISTUBA M, SCHILLING N, SCHMIDT-THIEME L Scalable Gaussian process-based transfer surrogates for hyperparameter optimization. Machine Learning, 2018, 107 (1): 43- 78.
doi: 10.1007/s10994-017-5684-y
|
| 15 |
CHRIS T, FRANK H, HOLGER H, et al. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. Proc. of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013: 847−855.
|
| 16 |
JAMES B, REMI B, YOSHUA B, et al. Algorithms for hyper-parameter optimization. Proc. of the 24th International Conference on Neural Information Processing Systems, 2011: 2546−2554.
|
| 17 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E Imagenet: classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
| 18 |
HE X, ZHAO K Y, CHU X W AutoML: a survey of the state-of-the-art. Knowledge-Based Systems, 2021, 212, 106622.
doi: 10.1016/j.knosys.2020.106622
|
| 19 |
STORK J, ZAEFFERER M, BARTZ-BEIELSTEIN T. Improving neuroevolution efficiency by surrogate model-based optimization with phenotypic distance kernels. https://arxiv.org/abs/1902.03419v1.
|
| 20 |
CAMERO A, WANG H, ALBA E, et al. Bayesian neural architecture search using a training-free performance metric. https://arxiv.org/abs/2001.10726.
|
| 21 |
JIN H F, SONG Q Q, HU X. Auto-Keras: an efficient neural architecture search system. Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1946−1956.
|
| 22 |
BASAR T, OLSDER G. Dynamic non-cooperative game theory. Philadelphia: Society for Industrial and Applied Mathematics, 1999.
|
| 23 |
JIANG F H, BAOYIN H X, LI J F Practical techniques for low-thrust trajectory optimization with homotopic approach. Journal of Guidance, Control, and Dynamics, 2012, 35 (1): 245- 258.
doi: 10.2514/1.52476
|
| 24 |
FAMILI A, SHEN W M, WEBER R, et al Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1997, 1 (1): 3- 23.
doi: 10.3233/IDA-1997-1102
|
| 25 |
FRANK H, HOLGER H H, KEVIN L B. Sequential model-based optimization for general algorithm configuration. Proc. of the 5th International Conference on Learning and Intelligent Optimization, 2011: 507−523.
|
| 26 |
DONALD R J A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 2001, 21 (4): 345- 383.
doi: 10.1023/A:1012771025575
|
| 27 |
ZENG Z P, ANTHONY K H T, WANG J Y, et al Comparing stars: on approximating graph edit distance. Proceedings of the VLDB Endowment, 2009, 2 (1): 25- 36.
doi: 10.14778/1687627.1687631
|
| 28 |
PETER A, NICOLO C B, PAUL F Finite-time analysis of the multiarmed bandit problem. Machine Learning, 2002, 47 (2): 235- 256.
|