1 |
XING M D, SU J H, WANG G Y, et al New parameter estimation and detection algorithm for high speed small target. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (1): 214- 224.
doi: 10.1109/TAES.2011.5705671
|
2 |
PAN M Y, SUN J, YANG Y H, et al Improved TQWT for marine moving target detection. Journal of Systems Engineering and Electronics, 2020, 31 (3): 470- 481.
doi: 10.23919/JSEE.2020.000029
|
3 |
CARLSON B D, EVANS E D, WILSON S L Search radar detection and track with the Hough transform. I. system concept. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (1): 102- 108.
doi: 10.1109/7.250410
|
4 |
CHEN X L, YU X H, HUANG Y, et al Adaptive clutter suppression and detection algorithm for radar maneuvering target with high-order motions via sparse fractional ambiguity function. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1515- 1526.
doi: 10.1109/JSTARS.2020.2981046
|
5 |
LI X L, SUN Z, YI W, et al Computationally efficient coherent detection and parameter estimation algorithm for maneuvering target. Signal Processing, 2019, 155 (2): 130- 142.
|
6 |
SUN Z, LI X L, YI W, et al Detection of weak maneuvering target based on keystone transform and matched filtering process. Signal Processing, 2017, 140 (11): 127- 138.
|
7 |
ZHU S Q, LIAO G S, YANG D, et al A new method for radar high-speed maneuvering weak target detection and imaging. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (7): 1175- 1179.
doi: 10.1109/LGRS.2013.2283887
|
8 |
HUANG P H, LIAO G S, YANG Z W, et al Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform. IEEE Trans. on Signal Processing, 2016, 64 (5): 4013- 4026.
|
9 |
LI X L, SUN Z, YEO T S, et al STGRFT for detection of maneuvering weak target with multiple motion models. IEEE Trans. on Signal Processing, 2019, 67 (7): 1902- 1917.
doi: 10.1109/TSP.2019.2899318
|
10 |
XU J, YU J, PENG Y N, et al Radon-Fourier transform (RFT) for radar target detection (I): generalized Doppler filter bank processing. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (2): 1186- 1202.
doi: 10.1109/TAES.2011.5751251
|
11 |
LI G, XIA X G, PENG Y N Doppler keystone transform: an approach suitable for parallel implementation of SAR moving target imaging. IEEE Geoscience and Remote Sensing Letters, 2008, 5 (4): 573- 577.
doi: 10.1109/LGRS.2008.2000621
|
12 |
ZHU D Y, LI Y, ZHU Z D A Keystone transform without interpolation for SAR ground moving-target imaging. IEEE Geoscience and Remote Sensing Letters, 2007, 4 (1): 18- 22.
doi: 10.1109/LGRS.2006.882147
|
13 |
LI X L, CUI G L, YI W, et al Sequence-reversing transform based coherent integration for high-speed target detection. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1573- 1580.
doi: 10.1109/TAES.2017.2668018
|
14 |
ZHENG J B, SU T, ZHU W T, et al Radar high-speed target detection based on the scaled inverse Fourier transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (3): 1108- 1119.
doi: 10.1109/JSTARS.2014.2368174
|
15 |
CHEN X L, GUAN J, LIU N B, et al Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration. IEEE Trans. on Signal Processing, 2014, 62 (4): 939- 953.
doi: 10.1109/TSP.2013.2297682
|
16 |
LI X L, CUI G L, YI W, et al Coherent integration for maneuvering target detection based on Radon-Lv’s distribution. IEEE Signal Processing Letters, 2015, 22 (9): 1467- 1471.
doi: 10.1109/LSP.2015.2390777
|
17 |
CHEN X L, GUAN J, LIU N B, at al Detection of a low observable sea-surface target with micromotion via the Radon-linear canonical transform. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (7): 1225- 1229.
doi: 10.1109/LGRS.2013.2290024
|
18 |
XU J, XIA X G, PENG S B, et al Radar maneuvering target motion estimation based on generalized Radon-Fourier transform. IEEE Trans. on Signal Processing, 2012, 60 (12): 6190- 6201.
doi: 10.1109/TSP.2012.2217137
|
19 |
LI X L, CUI G L, YI W, et al A fast maneuvering target motion parameters estimation algorithm based on ACCF. IEEE Signal Processing Letters, 2015, 22 (3): 270- 274.
doi: 10.1109/LSP.2014.2358230
|
20 |
CHEN X L, GUAN J, HUANG Y, et al Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (4): 2225- 2240.
doi: 10.1109/TGRS.2014.2358456
|
21 |
YU W C, SU W M, GU H Ground maneuvering target detection based on discrete polynomial-phase transform and Lv’s distribution. Signal Processing, 2018, 144, 364- 372.
doi: 10.1016/j.sigpro.2017.10.027
|
22 |
YU X H, CHEN X L, HUANG Y, et al Radar moving target detection in clutter background via adaptive dual-threshold sparse Fourier transform. IEEE Access, 2019, 7, 58200- 58211.
doi: 10.1109/ACCESS.2019.2914232
|
23 |
YU X H, CHEN X L, HUANG Y, et al. Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform. IEEE Geoscience & Remote Sensing Letters, 2020, 17(6): 978–982.
|
24 |
WANG S L, LI S G, NI J L, et al A new transform-match Fourier transform. Chinese Journal of Electronics, 2001, 29 (3): 403- 405.
|
25 |
HASSANIEH H, ADID F, KATABI D, et al Faster GPS via the sparse Fourier transform. Proc. of the Annual International Conference on Mobile Computing and Networking, 2012, 353- 364.
|
26 |
SCHUMACHER J. High performance sparse fast Fourier transform. Zurich, Switzerland: Swiss Federal Institute of Technology in Zurich, 2013.
|
27 |
GILBERT A C, INDYK P, IWEN M, et al Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data. IEEE Signal Processing Magazine, 2014, 31 (5): 91- 100.
doi: 10.1109/MSP.2014.2329131
|
28 |
CHEN X L, CHEN W S, RAO Y H, et al Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles. Journal of Radars, 2020, 9 (5): 803- 827.
|
29 |
LIU S H, SHAN T, TAO R, et al Sparse discrete fractional Fourier transform and its applications. IEEE Trans. on Signal Processing, 2014, 62 (24): 6582- 6595.
doi: 10.1109/TSP.2014.2366719
|
30 |
CHEN R R, SUN W, JIA X Z, et al Space taget detection method based on second-order Keystone transform. Modern Defence Technology, 2020, 48 (8): 93- 101.
|
31 |
ZHAI X D , YANG G , LIAN J . Weak moving target detection based on second-order Keystone transform. Modern Defence Technology, 49(3): 105–114.
|