
Journal of Systems Engineering and Electronics

Vol. 28, No. 3, June 2017, pp.606 – 616

Storage reliability assessment model based on
competition failure of multi-components in missile

Yunxiang Chen1, Qiang Zhang1,2, Zhongyi Cai1,*, and Lili Wang1

1. Equipment Management and Safety Engineering College, Air Force Engineering University, Xi’an 710051, China;
2. Defense Technology Research Academy of China Aerospace Science and Industry Corporation, Beijing 100854, China

Abstract: The degradation data of multi-components in missile is
derived by periodical testing. How to use these data to assess the
storage reliability (SR) of the whole missile is a difficult problem in
current research. An SR assessment model based on competition
failure of multi-components in missile is proposed. By analyzing
the missile life profile and its storage failure feature, the key com-
ponents in missile are obtained and the characteristics voltage is
assumed to be its key performance parameter. When the voltage
testing data of key components in missile are available, a state
space model (SSM) is applied to obtain the whole missile degra-
dation state, which is defined as the missile degradation degree
(DD). A Wiener process with the time-scale model (TSM) is applied
to build the degradation failure model with individual variability and
nonlinearity. The Weibull distribution and proportional risk model
are applied to build an outburst failure model with performance
degradation effect. Furthermore, a competition failure model with
the correlation between degradation failure and outburst failure is
proposed. A numerical example with a set of missiles in storage
is analyzed to demonstrate the accuracy and superiority of the
proposed model.

Keywords: competition failure model, storage reliability (SR), mis-
sile degradation degree (DD), proportional risk model, individual
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1. Introduction

Storage reliability (SR) is a vital tactical and technical in-
dicator, which relates to combat readiness and rapid re-
sponse capability. Usually, the missile has two types of fai-
lure modes, namely, degradation failure mode and outburst
failure mode. Missile failure in storage period is usually
due to the competition of these two modes. Long-term re-
pair experience shows that the key components failures ac-
count for high percent of the whole missile failures. By pe-
riodical testing, analyzing and evaluating the performance
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parameter data of multi-components, we can obtain the
whole missile degradation state.

In order to effectively carry out the condition based
maintenance (CBM) in storage period and life extension
after storage, it is essential to assess the missile SR in oc-
casion of competition failure. Current researches on reli-
ability modeling with competition of degradation failure
and outburst failure mainly focus on the following three
aspects.

The first aspect is whether the correlation between
degradation failure and outburst failure is taken into ac-
count. References [1 – 3] that viewed the two modes were
independent, assumed the reliability mode as the series
model and carried out relevant study on the reliability
model, which would decrease the accuracy of missile SR
assessment. References [4 – 6] that insisted on the influ-
ence of performance degradation on outburst failure, ap-
plied the proportional risk model [4], location- scale model
[7,8] and degradation threshold shock (DTS) [9] to de-
scribe the quantitative influence of performance degrada-
tion on outburst failure rate and built a competition failure
model with the correlation between degradation failure and
outburst failure. Lehmann [9] applied DTS to build the cor-
relation model among outburst failure, degradation process
and environment factors, which made the proposed model
in accordance with the product competition failure feature
and would improve the accuracy of missile SR assessment.

The second aspect is degradation modeling for multi-
variate parameters, namely, the product degradation state
is described by multivariate degradation parameters. There
are three approaches to handle this issue.

(i) Integrate multivariate parameters into single parame-
ter and describe the product whole degradation state [10 –
13]. Bayesian linear model [14], support vector machine
(SVM) [15] and state space model (SSM) [16] are usually
applied to build the correlation between the product whole
degradation state and its multivariate parameters. Wang et
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al. [13] used the Bayesian linear model to build linear cor-
relation between multivariate performance parameters and
its accumulative degradation values. However, his model
could not suit for nonlinearity. Cong et al. [15] used SVM
to integrate two parameters of engine into single parame-
ter, which could reflect the engine whole degradation state.

(ii) Directly build a joint lifetime distribution function
with multivariate performance parameters. There are two
situations in this case. One is the joint lifetime distribution
function with independent parameters [17,18]. Liang et al.
[18] firstly applied principal component analysis (PCA) to
integrate multivariate parameters into several key indepen-
dent parameters so as to decrease the amount of param-
eters, then they used the series model to build the joint
lifetime distribution function with the key parameters. The
other is the joint lifetime distribution function with correl-
ative parameters. Copula function [19 – 24] and the mul-
tivariate Normal distribution [25,26] are used to describe
the correlation among multivariate parameters. However
Copula function only suits for the joint lifetime distribu-
tion function with two parameters. Zhong et al. [26] used
the multivariate Normal distribution to describe the cor-
relation among multivariate parameters. Nevertheless, his
research had a certain limitation on that the marginal distri-
bution of each parameter was the Normal distribution and
had linear correlation among each other.

(iii) Respectively build the lifetime distribution function
with each performance parameters and apply the informa-
tion integration technology to integrate the estimates of
multivariate parameters of the lifetime distribution func-
tion into the deriving estimates [27,28]. Wang [28] applied
the isometric mapping method to decrease 25 parameters
into two parameters, respectively built the lifetime distri-
bution function and obtained the parameters estimates, and
then used the D-S evidence synthesis method to integrate
the double groups of estimates into one group. However,
his research ignored the interaction among multivariate pa-
rameters and the using sample information was not suffi-
cient, which would lead to a large deviation from the actual
degradation process.

The third aspect is the degradation failure model based
on the stochastic process. Because of the good property of
calculation and analysis, the Wiener process is applied to
model the non-monotonic degradation process. When ap-
plying the Wiener process to model the degradation pro-
cess, there are two problems that need to be considered.

Problem 1 How to deal with nonlinear degradation
data? There are two approaches. One is to use the time-
scale model (TSM) to directly transform time axis to trans-
form the nonlinearity into linearity and then apply the li-
near Wiener process to the degradation model [29 – 31].

This approach has the superiority in reducing the model
analysis difficulty and analytical calculation complexity.
The other is to directly build a nonlinear Wiener based
degradation model [32 – 35]. Because of the difficulty to
obtain the lifetime probability density function (PDF), this
approach only derives the approximated PDF with com-
plex calculation, which to some extend limits its applica-
tion.

Problem 2 How to incorporate the individual vari-
ability into the population-based degradation model? Even
the products from the same batch are affected by random
effects in manufacturing, material, transport and environ-
ment, which will lead to difference in the individual degra-
dation rate. The solution is to randomize the Wiener pro-
cess parameters. Tang et al. [36] and Si et al. [37] only ran-
domized the drift parameter as normal distribution and pro-
posed the lifetime PDF with individual variability, which
showed a better model fitting and reduced the calculation
complexity.

In order to handle the above issues, the cause of mis-
sile storage failure is analyzed so as to determine key com-
ponents in missile. Then, the characteristics voltage is as-
sumed to be the key performance parameter of the multi-
components. The degradation model for multi-components
in missile is assumed to be degradation modeling with
multivariate parameters. An SSM is applied to integrate
multi-components voltage data into the missile degrada-
tion degree (DD). The linear Wiener based degradation
model with TSM is applied to build the degradation fai-
lure model with individual variability and nonlinear data.
The Weibull distribution and proportional risk model are
applied to build the outburst failure model with the degra-
dation effect. Finally, the competition failure model with
the correlation between the degradation failure and out-
burst failure is proposed.

2. Missile storage failure

Life profile is the temporal description of all the events and
environment that the product experiences from birth or de-
livery to life termination or retirement. The main events of
missile in life cycle are warehouse storage, combat duty,
depot repair, and executing task or scrap, which are shown
in Fig. 1.

Storage failure is the prescriptive function loss caused
by the storage reasons in prescriptive storage condition and
time. By analyzing the depot repair data of missile, we
find that the failure of computer, amplifier, stabilizer, resis-
tance box, power component and flight control component
in missile are the main causes of missile failure [38]. Thus
we select these six components as the key components for
assessing the whole missile degradation state. According
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to the electronic product technical characteristic, we se-
lect the characteristic voltage as key performance para-
meter for the above key components. By periodical tes-
ting the voltage value of key components in missile, we
can assess the whole missile degradation state.

Fig. 1 Missile typical life profile

3. Missile DD

Degradation failure is thought to be the result of degra-
dation failure competition among key components in mis-
sile. The characteristic voltage value of multi-component
is the external expression of the missile inner degradation
state. Then we use SSM to construct a feature matrix of the
whole missile health state by these periodical testing data.
By calculating the similarity degree between missile nor-
mal state and its degradation state, the missile DD is shown
in Fig. 2.

Fig. 2 Missile DD deriving flow

3.1 Constructing state feature matrix

Use the characteristic voltage testing values of multi-
component in missile as the whole missile state informa-

tion and its feature matrix in certain state is constructed as

X = (x1, x2, · · · , xm) =⎡⎢⎢⎢⎣
x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

⎤⎥⎥⎥⎦ (1)

where X denotes the state feature matrix, xj =
(x1j , x2j · · · , xnj)T denotes the eigenvector, xij is the
state data of the ith feature at moment j (i = 1, 2, . . . , n;
j = 1, 2, . . . , m), n is the feature number, m is the number
of testing times.

3.2 Building state subspace

The missile state feature matrix contains different state in-
formation in the normal state and degradation state. Thus
its state subspace in the two states will have some diffe-
rence. Kernel principal component analysis (KPCA) is ap-
plied to build the missile state subspace from its feature
matrix.

Nonlinear mapping ϕ(·) is used to map the state feature
matrix X onto a high dimension space F . It is expressed
as

X �→ ϕ(·) :
ϕ(X) = [ϕ(x1), ϕ(x2), . . . , ϕ(xm)] (2)

where ϕ(X) is the state feature matrix in F , ϕ(xj) (j =
1, 2, . . . , m) is the nonlinear eigenvector corresponding to
the eigenvector xj .

Feature function of KPCA is written as

mhα = kα (3)

where α is the weight vector, h is eigenvalue of the co-
variance matrix C for ϕ(X), k is the kernel matrix and is
defined as

kij = 〈ϕ(xi), ϕ(xj)〉 = k(xi, xj) (4)

where i, j = 1, 2, . . . , m, k(·) denotes the kernel function.
We choose a Gaussian kernel function, that is

k(x, y) = exp
(‖x − y‖2

2σ2

)
. (5)

The weight vector α can be derived by (3).
By normalizing the eigenvector δ of the covariance ma-

trix C, the orthogonal basic vector ω can be formulated
as

ω =
δ

‖δ‖ =
ϕ(X)α√
αTkα

. (6)

Select the larger eigenvalue h corresponding to ω and
build the state subspace S as

S = span(ω1, ω1, . . . , ωr) (7)

where r is the dimension of state subspace.
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3.3 Deriving main angle

S0 denotes the missile state subspace in the normal state,
S1 denotes the missile state subspace in the degradation
state. Similarity between S0 and S1 can be expressed by
the main angle of their orthogonal basic vectors. The larger
main angle is, the larger similarity of the two state sub-
spaces has. W denotes the inner matrix of basic vectors
and is formulated as

W = ST
0 S1. (8)

By calculating the singular value of (8), d eigenvalues
(κ1, κ2, . . . , κd) can be derived. The main angle θi is for-
mulated as

θi = arccosκi, i = 1, 2, . . . , d. (9)

3.4 Calculating missile DD

According to (9), θi ∈ [0,π/2], the larger θi is, the less
similarity of S0 and S1 has. Because the minimum main
angle reflects the main similarity information of two sub-
spaces, missile DD is defined as the minimum main angle.
ε denotes the missile DD and is formulated as

ε = sin[min(θi)]. (10)

4. Competition failure model

4.1 Assumptions

Engineering experience indicates that the missile has a
degradation failure mode and an outburst failure mode. Its
storage failure is mainly due to the competition of these
two modes. Thus before modeling competition failure, the
following assumptions are given.

(i) Missile degradation state in the storage period can
be measured by missile DD. Missile DD can be calculated
by the characteristics voltage testing data of the key multi-
component in missile.

(ii) Missile DD is a random variable. When missile DD
first reaches the prescriptive degradation failure threshold,
the missile is judged to be degradation failure.

(iii) When the testing stimulus signal has no output or is
beyond the prescribed range by periodical testing the char-
acteristic voltage values of multi-components, the missile
is judged to be outburst failure and the latest testing time is
assumed to the outburst failure time.

(iv) Missile outburst failure time obeys to the Weibull
distribution and its outburst failure rate has positive corre-
lation with its current DD.

4.2 Degradation failure

ε(t) denotes missile DD. Taking into account of the indi-

vidual degradation variability, ε(t) is assumed to be a ran-
dom variable. According to the calculated value of ε(t), the
linear Wiener based degradation model is applied to model
the population-based degradation process. There are two
aspects of modeling.

(i) Linear degradation data
When the correlation between ε(t) and time t is linear,

the linear Wiener process is applied to describe ε(t). With-
out the loss of generality, ε(0) is thought to be zero, then
ε(t) is formulated as

ε(t) = ut + σB(t) (11)

where u is a drift parameter, σ is a diffusion parameter,
B(t) is the standard Brownian motion.

Let l (l > 0) denote the degradation failure threshold.
When ε(t) first reaches l, the missile is judged to be degra-
dation failure. Td denotes the degradation failure time and
can be expressed as

Td = inf{t|ε(t) � l}. (12)

According to the Wiener process property, ε(t) obeys to
the Normal distribution, i.e.

ε(t) ∼ N(ut, σ2t). (13)

The PDF of Td is formulated as

g[ε(t)] =
1√

2πσ2t
exp

[
− (ε(t) − ut)2

2σ2t

]
. (14)

Rd(t) denotes the reliability function of Td and is for-
mulated as

Rd(t) = p{Td > t} =

Φ
(

l − ut

σ
√

t

)
− exp

(
2ul

σ2

)
Φ
(−l − ut

σ
√

t

)
. (15)

where Φ(·) is the cumulative density function (CDF) of the
standard Normal distribution.

(ii) Nonlinear degradation data
When the correlation between ε(t) and time t is nonli-

near, TSM is applied to transform nonlinear data into lin-
earity. The typical formula of TSM is written as

τ = Λ(t) = tc (16)

where c is an unknown positive parameter. When c is as-
sumed to be one, the correlation turns to be linear.

When the nonlinear data group [t, ε(t)] is transformed
to be a linear data group [τ, ε(τ)] and ε(t) is equivalent to
ε(τ), (11) can be reformulated as

ε(τ) = uτ + σB(τ). (17)

The transformed PDF of Td is formulated as

g[ε(τ)] =
1√

2πσ2τ
exp

[
− (ε(τ) − uτ)2

2σ2τ

]
. (18)
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Rd(t) with the linearity transformation is formulated as

Rd(t) = Φ
(

l − uτ

σ
√

τ

)
− exp

(
2ul

σ2

)
Φ
(−l − uτ

σ
√

τ

)
.

(19)
In order to incorporate the individual degradation vari-

ability into the population-based degradation process, the
drift parameter u is randomized as the Normal distribution,
i.e. u ∼ N(u, σ2

u). The unknown parameter is derived as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u =

1
M

M∑
i=1

ui

σ2
u =

1
M

M∑
i=1

(ui − u)2
(20)

where ui is a drift parameter of the ith missile, and M is
the missile degradation failure number.

Thus, the PDF of Td with individual variability and non-
linearity is formulated as

g[ε(τ)] =
1√

2πσ2τ
exp

[
− (ε(τ) − uτ)2

2σ2τ

]
=

1√
2πσ2tc

exp
[
− (ε(t) − utc)2

2σ2tc

]
. (21)

Rd(t) with individual variability and nonlinearity is for-
mulated as

Rd(t) = Φ

(
l − uτ√

σ2τ + σ2
uτ2

)
−

exp
[

2l

σ2
(u +

σ2
u

σ2
)
]
Φ

[
−2lσ2

uτ + σ2(l + uτ)
σ2
√

σ2τ + σ2
uτ2

]
=

Φ

(
l − utc√

σ2tc + σ2
ut2c

)
−

exp
[

2l

σ2
(u +

σ2
u

σ2
)
]
Φ

[
−2lσ2

utc + σ2(l + utc)
σ2
√

σ2tc + σ2
ut2c

]
. (22)

4.3 Outburst failure

We assume that the missile outburst failure time obeys to
the Weibull distribution. Tr denotes the outburst failure
time. fr0(t) denotes the lifetime PDF without the influ-
ence of degradation process on outburst failure and is for-
mulated as

fr0(t) =
m

η

(
t

η

)m−1

exp
[
−
(

t

η

)m]
(23)

where m is a shape parameter and η is a scale parameter.

λr0(t) denotes the missile outburst failure rate without
the influence of performance degradation and is formulated
as

λr0(t) =
m

η

(
t

η

)m−1

. (24)

4.4 Competition failure

T denotes the missile failure time in storage period. Be-
cause the missile failure in storage period is caused by the
competition of degradation failure and outburst failure, T

can be formulated as

T = min{Td, Tr}. (25)

R(t) denotes the missile SR in occasion of competi-
tion failure with the correlation between degradation fail-
ure and outburst failure and is formulated as

R(t) = p{T > t} = p{Td > t, Tr > t} =

p{Tr > t|Td > t}p{Td > t} =

Rr|d(t)Rd(t) (26)

where Rr|d(t) denotes the conditional reliability function
(CRF) of the outburst failure time under the condition that
the missile does not suffer from degradation failure.

Since the missile outburst failure rate has correlation
with current DD, a proportional risk model [39] is applied
to describe the positive correlation between the outburst
failure rate and missile DD. εt denotes the correspond-
ing DD values. λr(t, εt) denotes the outburst failure rate
at time t. We assume that failure does not occur until time
t and λr(t, εt) can be formulated as

λr(t, εt) = λr0(t)q(εt) (27)

where λr0(t) is the standard risk function when q(εt) = 1,
which can be expressed by the missile outburst failure rate
without the influence of performance degradation. The ty-
pical function form of q(εt) is written as

q(εt) = exp(β0 + β1εt) (28)

where β0 and β1 are unknown fixed parameters.
ε(t) is a random variable. For the guarantee that failure

does not occur until time t, (27) can be reformulated as

λr[t, ε(t)]) = λr0(t)
∫ l

0

q(εt)g(εt)dεt. (29)

With the consideration of individual degradation vari-
ability and nonlinearity, we substitute (16), (21) and (28)
into (29) and derive the formula of λr(t, εt) as

λr[t, ε(t)] = λr[t, ε(τ)] =

λr0(t)
∫ l

0

q(ετ )g(ετ )dετ =
m

η

(
t

η

)m−1

·
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∫ l

0

exp(β0 + β1ετ )
1√

2πσ2τ
exp

[
− (ετ − uτ)2

2σ2τ

]
dετ =

m

η

(
t

η

)m−1

exp(β0 + β1uτ +
1
2
β2

1σ2τ)·

Φ
(

l − uτ − β1σ
2τ

σ
√

τ

)
=

m

η

(
t

η

)m−1

·

exp
(

β0 + β1utc +
1
2
β2

1σ2tc
)

Φ
(

l − utc − β1σ
2tc

σ
√

tc

)
.

(30)

Thus Rr|d(t) is formulated as

Rr|d(t) = exp
{
−

∫ t

0

λr[μ, ε(μ)]dμ

}
. (31)

fr|d(t) denotes the condition PDF of the outburst failure
time under the condition that missile does not suffer from
degradation failure at time t and is formulated as

fr|d(t) = λr[t, ε(t)] · Rr|d(t). (32)

Substituting (31) into (26), R(t) is reformulated as

R(t) = Rr|d(t)Rd(t) =

exp
{
−

∫ t

0

λr[μ, ε(μ)]dμ

}
Rd(t)=exp

{
−

∫ t

0

[
m

η

(
t

η

)m−1

·

exp
(

β0+β1utc+
1
2
β2

1σ2tc
)

Φ
(

l−utc−β1σ
2tc

σ
√

tc

)]
dμ

}
={

Φ
(

l − utc√
σ2tc + σ2

ut2c

)
−

exp
[

2l

σ2

(
u +

σ2
u

σ2

)]
Φ
[
− 2lσ2

utc + σ2(l + utc)
σ2
√

σ2tc + σ2
ut2c

]}
.

(33)

If the missile outburst failure has no correlation with its
degradation failure, missile SR R′(t) can be expressed as

R′(t) = exp[−
∫ t

0

λr0(μ)dμ]Rd(t). (34)

ξ denotes the mean time between failure (MTBF) of
missile in storage period and is formulated as

ξ =
∫+∞

0

tR(t)dt. (35)

5. Parameters estimation

According to the competition failure modeling above, the
unknown parameters are divided into three parts. The first
is model parameters of degradation failure and is denoted

as θ1 = (u, σ, c). The second is model parameters of out-
burst failure and is denoted as θ2 = (m, η). The third is
parameters affecting the outburst failure rate by degrada-
tion and is denoted as θ3 = (β0, β1).

We assume that a set of missiles with the same type are
stored in a prescriptive warehouse. The characteristic volt-
age of multi-components in missile is periodically tested.
t1, t2 · · · , tn denotes the testing time. SSM is applied to
calculate missile DD at every testing time. By analyzing
the missile DD value, M missiles suffer from the degrada-
tion failure in storage period time (0, tn], N missiles suffer
from the outburst failure, and K missiles are still in good
condition.

5.1 Estimating θ1

There are M missiles with degradation failure and the M th
missile is tested at time t1M1 , t2M2 , . . . , tMMM . ε(tij) de-
notes the DD value of the ith missile at the jth testing
time (i = 1, 2, . . . , M ; j = 1, 2, . . . , Mi). The data group
[tij , ε(tij)] can be transformed into a linear data group
[τij , ε(τij)] by TSM, where τij = tcij and ε(τij) = ε(tij).

According to the Wiener process property and (21), the
likelihood function for θ1 with degradation failure samples
is formulated as

L(ui, σ
2) =

M∏
i=1

Mi∏
j=1

g[ε(Δτij)] =

M∏
i=1

Mi∏
j=1

1√
2πσ2Δtcij

exp

[
− (ε(Δtij) − uiΔtcij)

2

2σ2Δtcij

]
(36)

with {
Δtij = tij − ti(j−1)

ε(Δtij) = ε(tij) − ε(ti(j−1))
. (37)

The log-likelihood function for θ1 is reformulated as

ln L(ui, σ
2) =

−1
2

M∑
i=1

Mi∑
j=1

[
ln(2πΔtcij)+lnσ2+

(ε(Δtij) − uiΔtcij)
2

σ2Δtcij

]
.

(38)
Set the first partial derivatives of ln L(ui, σ

2) with re-
spect to ui and σ2 to zero, then the estimates of (ui, σ

2)
are formulated as

ûi =

M∑
i=1

ε(tiMi)

M∑
i=1

tciMi

(39)
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σ̂2 =
1

M∑
i=1

Mi

⎡⎢⎢⎢⎢⎢⎣
M∑
i=1

Mi∑
j=1

(Δε(tij))2

Δtcij
−

[
M∑
i=1

ε(tiMi)

]2

M∑
i=1

tciMi

⎤⎥⎥⎥⎥⎥⎦ .

(40)
Because the solution to (39) and (40) depends on the

value of c, the FMINSEARCH function is used to han-
dle this problem. Let c be a variable and ln L(u i, σ

2) be
a optimal function. Firstly, set c0 be the initial value of
c. Then the FMINSEARCH function is used to derive the
maximum value of ln L(ui, σ

2) by searching the value of
c. When ln L(ui, σ

2) reaches its maximum value, the retur-
ning value of c is the estimate ĉ. ûiand σ̂2 will be derived
by substituting ĉ into (20). Finally, u and σ̂2

u will be ob-
tained by substituting ûi into (21).

5.2 Estimating θ2 and θ3

There are N missiles with outburst failure. t1N1 , t2N2 , . . . ,

tNNN are the missile outburst failure time. ε(t1N1),
ε(t2N2), . . . , ε(tNNN ) are the corresponding missile DD
values. There are K missiles without any failure at the ter-
minal testing time tn.

According to (32) and (33), the likelihood function for
θ2 and θ3 with outburst failure samples and no-failure
samples is formulated as

L(θ2, θ3) =
N∏

i=1

fr|d(tiNi)
K∏

i=1

R(tn) =

N∏
i=1

λr [tiNi , ε(tiNi)]Rr|d(tiNi)
K∏

i=1

R(tn). (41)

Substitute (30) – (32) into (41) and the likelihood func-
tion for θ2 and θ3 with unknown fixed parameters could
be built. Due to the calculation complexity of the likeli-
hood function, the Markov chain Monte Carlo (MCMC) is
applied to quickly derive the estimates of θ2 and θ3 [40].

When substitute θ̂1, θ̂2, θ̂3 into (33) and (35), SR and
MTBF of this set of missiles will be obtained.

6. Numerical examples

There are 20 air-to-ground missiles with the same type
stored in a warehouse. Computer, amplifier, stabilizer, re-
sistance box, power and flight control are assumed to be the
key components of air-to-ground missiles, which can rep-
resent for the whole missile health state. The missile stor-
age period is ten years. The characteristic voltage value of
multi-components is tested every half a year. The voltage
testing values of multi-components in a healthy missile is
shown in Fig. 3.

Fig. 3 Voltage testing values of multi-components in a healthy
missile

According to the missile design specification, the char-
acteristic voltage standard value of computer, amplifier,
stabilizer, resistance box, power component and flight con-
trol component are 19 V, 5.7 V, 1.75 V, 3.4 V, 34 V and
18.7 V, respectively. When the characteristic voltage test-
ing value of multi-components exceeds 10% of the stan-
dard value, the missile is judged to be degradation failure.
The missile DD is calculated to be 0.173 6 at this time,
which is assumed to be the degradation threshold l. When
the testing value exceeds 100% of the standard value or the
testing value is zero, the missile is judged to be outburst
failure.

6.1 Missile DD calculation

According to the characteristic voltage testing data of
multi-components in missile, SSM is applied to calculate
missile DD in each testing time.

According to the above failure judgment, there are eight
missiles with degradation failure, seven missiles with out-
burst failure and five missiles without any failure. The re-
sult of missile DD with degradation failure is shown in
Fig. 4. Missile degradation failure time and the correspon-
ding DD are shown in Table 1. Missile outburst failure time
and the corresponding DD are shown in Table 2.
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Fig. 4 DD values with degradation failure samples

Table 1 Missile DD with degradation failure time

Missile td ε(td) Missile td ε(td)

1 7.5 0.182 9 5 9.5 0.173 8
2 8.5 0.173 7 6 9.5 0.181 8
3 8.5 0.184 7 7 9.5 0.179 4
4 9 0.179 3 8 10 0.183 8

Table 2 Missile DD with outburst failure time

Missile tr ε(tr) Missile tr ε(tr)

1 4.5 0.094 8 5 7.5 0.136 0
2 5.5 0.108 3 6 7.5 0.134 4
3 6 0.116 1 7 8.5 0.158 8
4 7 0.120 4

6.2 Parameters estimation

(i) Estimating θ1

Set one as the initial value of c. According to the
calculated missile DD data with degradation failure, the
FMINSEARCH is used to search the maximum value of
ln L(ui, σ

2) for (38). When ln L(ui, σ
2) reaches its maxi-

mum value at 7.419, c is 1.127. Substituting the value of
c into (39) and (40), the estimates ûi with degradation
failure are derived as 0.074 6, 0.081 2, 0.083 9, 0.076 0,
0.072 8, 0.081 0, 0.084 1 and 0.087 4. The estimate σ̂ 2 is
2.881 × 10−6. Substitute the estimate ûi into (20) and the
estimate of θ1 is obtained as

θ̂1 = (u, σ̂2, ĉ) = (0.075 3, 2.881× 10−6, 1.127).

(ii) Estimating θ2 and θ3

According to the calculated missile DD data with out-
burst failure and no-failure, WinBUGS toolbox based on
MCMC is applied to solve (40) [40]. The estimates of θ2

and θ3 are obtained as

θ̂2 = (m̂, η̂) = (5.644, 6.512)

θ̂3 = (β̂0, β̂1) = (0.073 8,−8.483 7).

6.3 Distribution hypothesis testing

(i) DD increment
Let

zi = [ε(τi) − uτi]/σ
√

τi =

[ε(ti) − utbc
i ]/σ̂

√
tbc
i , i = 1, 2, . . . , 8.

According to the estimates θ̂1 and DD increment of
eight missiles with degradation failure, the Anderson-
Darling (AD) statistics is applied to test whether zi obeys
to the Normal distribution, i.e. N(0, 1). Fig. 5 shows that
DD increment data after transforming into linearity is ac-
cepted as obeying to the Normal distribution at 95% confi-
dence level, which means the degradation process of mis-
siles can be described by the Wiener process.

Fig. 5 Goodness of Normal fit test for DD increment

(ii) Outburst failure time
According to the failure time of seven missiles with out-

burst failure, the AD statistics is applied to test where Tr

obeys to Weibull distribution. Fig. 6 shows that Tr is ac-
cepted as obeying to the Weibull distribution at 95% con-
fidence level.

Fig. 6 Goodness of Weibull fit test for outburst failure time
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6.4 Assessing SR

Substitute the estimates of θ1, θ2, θ3 into (33), then the
missile SR R(t) of competition failure with the two corre-
lation failure modes is derived and its corresponding model
is denoted as M1. Substitute the estimates of θ1, θ2, θ3

into (34), then the missile SR R′(t) of competition failure
with the two independence failure modes is derived and its
corresponding model is denoted as M2. Substitute the es-
timates of θ1, θ2, θ3 into (22), then the missile SR Rd(t)
with only degradation failure information is derived and its
corresponding model is denoted as M3. Missile SR curves
by M1, M2 and M3 are shown in Fig. 7. Missile storage
PDFs by M1, M2 and M3 are shown in Fig. 8.

Fig. 7 Missile SR curves by M1, M2 and M3

Fig. 8 Missile storage PDFs by M1, M2 and M3

Fig. 7 shows that the value of Rd(t) is largest. This is
because that the model with only degradation failure in-
formation ignores the information of the outburst failure,
which will lead to a high error of missile SR assessment.
The value of R(t) is smaller than that of R ′(t). This is be-
cause that the proposed competition failure model with the
correlation failure modes fully uses the population-based
information, which is a conservative approach and is in ac-
cordance with engineering practice.

Fig. 8 shows that the missile storage PDFs by M1 and
M2 are very sharper than that by M3 and they are close
to each other, which demonstrates the better model fitting
capability of M1 and M2. Compared with M2, M1 has a
conservative result of PDF, which leads to a smaller mis-
sile storage MTBF and an earlier preparing for the life ex-
tension after storage.

6.5 Assessment accuracy

According to (35), the estimates of missile storage MTBF
by M1, M2 and M3 are 11.12, 11.83 and 13.41. According
to the recorded failure time or terminated testing time of
missiles, ξ∗ denotes the statistic of missile storage MTBF
and is formulated as

ξ∗ =
T

r
=

∑
Tr +

∑
Td +

∑
tn

rr + rd
= 11.47 (42)

where rr and rd are the number of degradation failure and
outburst failure, respectively.

In the calculation above, missile testing time was sim-
plified to be its failure time. Actually, the missile failure
time is within the interval of the current testing time and
the previous testing time, namely, ξ∗ is within the interval
of [10.97, 11.47].

Thus the estimate of missile storage MTBF by M1 is
within the range of [10.97, 11.47], but the estimates of mis-
sile storage MTBF by M2 and M3 are not in this range,
which proves that the proposed model has a better model
fitting capability than that of M2 and M3.

The residual lifetime (RL) is defined as the length of
time from the present time to the failure time. According
to (35), the storage RL by M1, M2 and M3 from the 6th
year to the 10th year is shown in Fig. 9.

Fig. 9 Missile storage RL by M1, M2 and M3

Fig. 9 shows that the estimates of storage RL by M1 are
almost all in the range of its statistics, which proves that
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the accuracy of storage RL assessment is improving along
with the increasing testing data. However, the estimates of
storage RL by M2 and M3 are not in the range of its statis-
tics, which further proves that the proposed model has a
higher assessment accuracy and can well reflect the mis-
sile RL competition failure feature.

7. Conclusions

This paper has drawn the following conclusions:
(i) An effective approach for degradation competition

modeling of multi-components is proposed. According to
the characteristic voltage testing data of multi-components
in missile, SSM is applied to calculate missile DD, which
reflects the whole degradation state.

(ii) The analytical formulas to the missile SR and RL
of competition failure with the correlation between degra-
dation failure and outburst failure are obtained with the
consideration of individual variability and nonlinear data,
which well reflects the missile storage competition failure
feature.

(iii) The FMINSEARCH function is applied to derive
the optimal estimates of likelihood function with degrada-
tion failure information. MCMC is applied to quickly solve
the complex likelihood function with outburst failure and
no-failure information.

(iv) By comparing the SR, MTBF and RL with the tra-
ditional methods, the proposed model shows the better as-
sessment accuracy and model fitting.
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