1 |
LECUN Y, KAVUKCUOGLU K, FARABET C. Convolutional networks and applications in vision. Proc. of the IEEE International Symposium on Circuits & Systems, 2010, 253- 256.
|
2 |
SERMANET P, EIGEN D, ZHANG X, et al. OverFeat:integrated recognition, localization and detection using convolutional networks. Proc. of the International Conference on Learning Representations, 2014, 1- 16.
|
3 |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks. Proc. of the European Conference on Computer Vision, 2014, 818- 833.
|
4 |
ZHANG F, DU B, ZHANG L. Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. on Geoscience & Remote Sensing, 2015, 53 (4): 2175- 2184.
|
5 |
HU F, XIA G, WANG Z, et al. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8 (5): 2015- 2030.
|
6 |
ZHAO L J, TANG P, HUO L Z. Land-use scene classification using a concentric circle-structured multi-scale bag-of-visualwords model. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7 (12): 4620- 4631.
|
7 |
CHEN S, TIAN Y. Pyramid of spatial relations for scene-level land use classification. IEEE Trans. on Geoscience & Remote Sensing, 2015, 53 (4): 1947- 1957.
|
8 |
PENATTI O A, NOGUEIRA K, SANTOS J A D. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 44- 51.
|
9 |
MARMANIS D, DATCU M, ESCH T, et al. Deep learning earth observation classification using image net pre-trained networks. IEEE Geoscience & Remote Sensing Letters, 2016, 13 (1): 105- 109.
|
10 |
SCOTT G J, ENGLAND M R, STARMS W A, et al. Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geoscience & Remote Sensing Letters, 2017, 14 (4): 549- 553.
|
11 |
BAO H C, FANG L, LIU R Y. Research and application of the storage way of land use change records. Journal of Zhejiang University (Science Edition), 2011, 38 (2): 218- 222.
|
12 |
LAI J B, LUO X L, YU T, et al. Remote sensing data organization model based on cloud computing. Computer Science, 2013, 40 (7): 80- 84.
|
13 |
YANG H P, SHEN Z F, LUO J C, et al. Recent developments in high performance geocomputation for massive remote sensing data. Journal of Geo-Information Science, 2013, 15 (1): 128- 136.
doi: 10.3724/SP.J.1047.2013.000128
|
14 |
LIU Y, GUO W, JIANG W S, et al. Research of remote sensing service based on cloud computing mode. Application Research of Computers, 2009, 26 (9): 3428- 3431.
|
15 |
REN F H, WANG J N. Turning remote sensing to cloud services:technical research and experiment. Journal of Remote Sensing, 2012, 16 (6): 1339- 1346.
|
16 |
WAN B, YANG L. Data center:GIS function warehouse. Earth Science-Journal of China University of Geosciences, 2010, 35 (3): 357- 361.
doi: 10.3799/dqkx.2010.039
|
17 |
CHU C, KIM S K, LIN Y A, et al. Map-reduce for machine learning on multicore. Proc. of Advances in Neural Information Processing Systems, 2007, 281- 288.
|
18 |
MACKAY D J C. A practical Bayesian framework for back propagation networks. Neural Computation, 1992, 4 (3): 448- 472.
doi: 10.1162/neco.1992.4.3.448
|
19 |
SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms. Proc. of Advances in Neural Information Processing Systems, 2012, 2951- 2959.
|
20 |
RUMELHART D, HINTON G, WILLIAMS R. Learning representations by back-propagating errors. Nature, 1986, 323 (6088): 533- 536.
doi: 10.1038/323533a0
|
21 |
XU M, ZENG G, XU X, et al. Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in north Carolina. Water, Air, and Soil Pollution, 2006, 172 (1-4): 167- 184.
doi: 10.1007/s11270-005-9068-8
|
22 |
FORESEE F D, HAGAN M T. Gauss-Newton approximation to Bayesian regularization. Proc. of the International Joint Conference on Neural Networks, 1997, 1930- 1935.
|
23 |
ERHAN D. Why does unsupervised pre-training help deep learning?. Journal of Machine Learning Research, 2010, 11 (3): 625- 660.
|
24 |
FAN J, XU W, WU Y, et al. Human tracking using convolutional neural networks. IEEE Trans. on Neural Network, 2010, 21 (10): 1610- 1623.
doi: 10.1109/TNN.2010.2066286
|
25 |
LIU B, BLASCH E, CHEN Y, et al. Scalable sentiment classification for big data analysis using Naïve Bayes classifier. Proc. of the IEEE International Conference on Big Data, 2013, 99- 104.
|