1 |
DIAO W H, MAO X, CHANG L. A new quality estimation method for infrared target images. Acta Aeronautical Astronautical Ainica, 2010, 31 (10): 2026- 2033.
|
2 |
CHEN Y, CHEN G, BLUM R S, et al. Image quality measures for predicting automatic target recognition performance. Proc. of the IEEE Aerospace Conference, 2008, 1- 9.
|
3 |
CLARK L G, VELTEN V J. Image characterization for automatic target recognition algorithm evaluations. Optical Engineering, 1991, 30 (2): 147- 153.
|
4 |
LIU R, LIU E, YANG J, et al. Point target detection of infrared images with eigentargets. Optical Engineering, 2007, 46 (11): 501- 503.
|
5 |
MA Y, KONG B. A study of object detection based on fuzzy support vector machine and template matching. Proc. of the World Congress on Intelligent Control and Automation, 2004, 4137- 4140.
|
6 |
YANG L, YANG J. Detection of small targets with adaptive binarization threshold in infrared video sequences. Chinese Optics Letters, 2006, 4 (3): 152- 154.
|
7 |
PETERS R A. Image complexity metrics for automatic target recognizers. Proc. of the Automatic Target Recognizer System&Technology Conference, 1990, 1- 7.
|
8 |
BHANU B. Automatic target recognition:state of the art survey. IEEE Trans. on Aerospace and Electronic Systems, 1986, 22 (4): 364- 379.
|
9 |
GAO Z Y, YANG X M, GONG J M, et al. Research on image complexity description methods. Journal of Image and Graphics, 2010, 15 (1): 129- 135.
|
10 |
WILSON D L. Image based contrast to clutter modeling of detection. Optical Engineering, 2001, 40 (9): 1852- 1857.
doi: 10.1117/1.1389502
|
11 |
BEARD J, GLARK L G, VELTEN V J. Characterization of ATR performance in relation to image measurements. Automatic Target Recognizer Report, 1985, 27- 55.
|
12 |
ZHU Y, DUAN J, QIAN X F, et al. Research on the optimal selection method of image complexity assessment model index parameter. Proc. of the Applied Optics and Photonics, 2015, 96751K.
|
13 |
HALLER R S. Complexity of real images evaluated by densitometric analysis and by psychophysical scaling. Arizona: University of Arizona, 1970.
|
14 |
MAO X, DIAO W H. Criterion to evaluate the quality of infrared small target images. Journal of Infrared Millimeter&Terahertz Waves, 2009, 30 (1): 56- 64.
|
15 |
HARPER S, JAY C, MICHAILIDOU E, et al. Analysing the visual complexity of web pages using document structure. Behaviour&Information Technology, 2013, 32 (5): 491- 502.
|
16 |
CORCHS S E, CIOCCA G, BRICOLO E, et al. Predicting complexity perception of real-world images. PLoS One, 2016, 11 (6): e0157986.
doi: 10.1371/journal.pone.0157986
|
17 |
CIOCCA G, CORCHS S, GASPARINI F, et al. Does color influence image complexity perception?. Proc. of the 5th Computational Color Imaging Workshop, 2015, 139- 148.
|
18 |
ZHOU B, XU S, YANG X X. Computing the color complexity of images. Proc. of the International Conference on Fuzzy Systems&Knowledge Discovery, 2016, 1942- 1946.
|
19 |
LI M. Image measurement research for automatic target recognition performance evaluation. Wuhan: Huazhong University of Science and Technology, 2006.(in Chinese)
|
20 |
DIAO W H, MAO X, CHANG L. Quality estimation of image sequence for automatic target recognition. Journal of Electronics&Information Technology, 2010, 32 (8): 1779- 1785.
|
21 |
DIAO W H, MAO X, ZHENG H C, et al. Image sequence measures for automatic target tracking. Progress in Electromagnetics Research, 2012, 130 (1): 447- 472.
|
22 |
SCHMIEDER D E, WEATHERSBY M R. Detection performance in clutter with variable resolution. IEEE Trans. on Aerospace and Electronic Systems, 1983, 19 (4): 622- 630.
|
23 |
HILGERS J W, WILLIAM P V, WILLIAM R R. Sensor and detection algorithm based clutter metrics. Proc. of SPIE, 1997, 30 (62): 267- 277.
|
24 |
SADJADI F A, BAZAKOS M E. Perspective on automatic target recognition evaluation technology. Optical Engineering, 1991, 30 (2): 1- 14.
|
25 |
ZHENG X, PENG Z M, DAI J H. Criterion to evaluate the quality of infrared target images based on scene features. Electronics&Electrical Engineering, 2014, 20 (10): 44- 50.
|
26 |
SHIRVAIKAR M V, TRIVEDI M M. Developing texturebased image clutter measures for object detection. Optical Engineering, 1992, 31 (12): 2618- 2639.
doi: 10.1117/12.60009
|
27 |
HARACLICK R M. Texture features for image classification. IEEE Trans. on Systems, Man, and Cybernetics, 1973, 3 (6): 610- 621.
|
28 |
WALDMAN G, WOOTTON J, HOBSON G, et al. A normalized clutter measure for images. Computer Vision Graphics&Image Processing, 1988, 42 (2): 137- 156.
|
29 |
CLARK L G, VELTEN V J. Image characterization for automatic target recognition algorithm evaluations. Proceedings of SPIE, 1991, 30 (30): 147- 153.
|
30 |
CHANG H, ZHANG J Q. Evaluation of human detection performance using target structure similarity clutter metrics. Optical Engineering, 2006, 45 (9): 1- 7.
|
31 |
CHANG H, ZHANG J Q. New metrics for clutter affecting human target acquisition. IEEE Trans. on Aerospace and Electronic System, 2006, 42 (1): 361- 368.
doi: 10.1109/TAES.2006.1603429
|
32 |
AVIRAM G, ROTMAN S R. Evaluating human detection performance of targets and false alarms, using a statistical texture image metric. Optical Engineering, 2000, 39 (8): 2285- 2295.
doi: 10.1117/1.1304925
|
33 |
CONNERS R W, HARLOW C A. A theoretical comparison of texture algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 2 (3): 204- 222.
|
34 |
LI M, ZHANG G. Image measures for segmentation algorithm evaluation of automatic target recognition system. Proc. of the International Symposium on Systems and Control in Aerospace and Astronautics, 2005, 674- 679.
|
35 |
DIAO W H, MAO X, DONG X Y. Infrared small target image quality evaluation. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34 (11): 1335- 1338.
|
36 |
LI Z S, SHI Y Y, XIN H M, et al. Technological parameter optimization of disc-milling grooving of titanium alloy based on grey correlation degree. Journal of Northwestern Polytechnical University, 2018, 36 (1): 139- 148.
doi: 10.1051/jnwpu/20183610
|
37 |
TRIVEDI M M, SHIRVAIKAR M V. Quantitative characterization of image clutter:problem, progress, and promises. Proc. of the International Society for Optical Engineering, 1993, 1962- 1967.
|
38 |
ZHENG X. The evaluation method and application of infrared image without reference image. Chengdu: University of Electronic Science and Technology of China, 2015.(in Chinese)
|
39 |
LI J N, DUAN J, YANG X, et al. An image overall complexity evaluation method based on LSD line detection. Proc. of the IOP Conference Series:Earth and Environmental Science, 2017, 012162.
|