1 |
SHAN M H, GUO J, JILL E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80, 18- 32.
doi: 10.1016/j.paerosci.2015.11.001
|
2 |
NISHIDA S I, KAWAMOTO S, OKAWA Y, et al. Space debris removal system using a small satellite. Acta Astronautica, 2009, 65, 95- 102.
doi: 10.1016/j.actaastro.2009.01.041
|
3 |
WEN H, JIN D P, HU H Y. Retrieval control of an electrodynamic tethered satellite in an inclined orbit. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40 (3): 375- 380.
|
4 |
WEN H, JIN D P, HU H Y. Feedback control for retrieving an electro-dynamic tethered sub-satellite. Tsinghua Science and Technology, 2009, 14 (S2): 79- 83.
doi: 10.1016/S1007-0214(10)70036-5
|
5 |
WEN H, JIN D P, HU H Y. Removing singularity of orientation description for modeling and controlling an electro-dynamic tether. Journal of Guidance, Control, and Dynamics, 2018, 41 (3): 761- 766.
|
6 |
HUANG P F, HU Z H, MENG Z J. Coupling dynamics modeling and optimal coordinated control of tethered space robot. Aerospace Science and Technology, 2015, 41, 36- 46.
doi: 10.1016/j.ast.2014.12.006
|
7 |
LINSKENS H T K, MOOIJ E. Tether dynamics analysis and guidance and control design for active space-debris removal. Journal of Guidance, Control, and Dynamics, 2016, 39 (6): 1232- 1243.
doi: 10.2514/1.G001651
|
8 |
HUANG P F, WANG D K, MENG Z J, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE/ASME Trans. on Mechatronics, 2016, 21 (5): 2260- 2271.
|
9 |
HUANG P F, WANG D K, MENG Z J, et al. Adaptive post-capture back-stepping control for tumbling tethered space robot-target combination. Journal of Guidance, Control, and Dynamics, 2016, 39 (1): 150- 156.
|
10 |
JAWORSKI P, LAPPAS V, TSOURDOS A, et al. Debris rotation analysis during tethered towing for active debris removal. Journal of Guidance, Control, and Dynamics, 2017, 40 (7): 1768- 1778.
|
11 |
MENG Z J, HUANG P F, WANG D K. In-plane adaptive retrieval method for tethered space robots after target capturing. Acta Aeronautica et Astronautica Sinica, 2015, 36 (12): 4035- 4042.
|
12 |
HUANG P F, ZHANG F, MENG Z J. Adaptive control for space debris removal with uncertain kinematics, dynamics and states. Acta Astronautica, 2016, 128, 416- 430.
doi: 10.1016/j.actaastro.2016.07.043
|
13 |
LAKSO J J, COVERSTONE V L. Optimal tether deployment/retrieval trajectories using direct collocation. Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2000: 1-9.
|
14 |
YU B S, JIN D P. Asymptotic stabilization for deployment and retrieval of a tethered satellite system. Chinese Space Science and Technology, 2013, (5): 35- 43.
|
15 |
WILLIAMS P, TRIVAILO P. On the optimal deployment and retrieval of tethered satellites. Proc. of the 41st AIAA/ASME/SAE/ASEE Joint Propulsions Conference and Exhibit, 2005, DOI: 10.2514/6.2005-4291.
|
16 |
WILLIAMS P. Optimal deployment/retrieval of tethered satellites. Journal of Spacecraft and Rockets, 2008, 45 (2): 324- 343.
doi: 10.2514/1.31804
|
17 |
ZHONG R, ZHU Z H. Timescale separate optimal control of tethered space-tug systems for space-debris removal. Journal of Guidance, Control, and Dynamics, 2016, 39 (11): 2539- 2544.
|
18 |
SUN G H, ZHU Z H. Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronautica, 2014, 104, 304- 312.
doi: 10.1016/j.actaastro.2014.08.012
|
19 |
YU B S, JIN D P. Deployment and retrieval of tethered satellite system under J2 perturbation and heating effect. Acta Astronautica, 2010, 67, 845- 853.
doi: 10.1016/j.actaastro.2010.05.013
|
20 |
QI R, MISRA A K, ZUO Z Y. Active debris removal using double-tethered space-tug system. Journal of Guidance, Control, and Dynamics, 2017, 40 (3): 720- 728.
|
21 |
ZHANG F, HUANG P F. Releasing dynamics and stability control of maneuverable tethered space net. IEEE/ASME Trans. on Mechatronics, 2017, 22 (2): 983- 993.
|
22 |
ZHANG F, HUANG P F, MENG Z J, et al. Dynamics analysis and controller design for maneuverable tethered space net robot. Journal of Guidance, Control, and Dynamics, 2017, 40 (11): 2828- 2843.
doi: 10.2514/1.G002656
|
23 |
LIU Y, HUANG P F, ZHANG F, et al. Distributed formation control using artificial potentials and neural network for Constrained multi-agent systems. IEEE Trans. on Control Systems Technology, 2018.
doi: 10.1109/TCST.2018.2884226
|
24 |
MENG Z J, HUANG P F, GUO J. Approach modeling and control of an autonomous maneuverable space net. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (6): 2651- 2661.
doi: 10.1109/TAES.2017.2709794
|
25 |
HUANG P F, HU Z H, ZHANG F. Dynamic modeling and coordinated controller designing for the maneuverable tether-net space robot system. Multi-body System Dynamics, 2016, 36, 115- 141.
doi: 10.1007/s11044-015-9478-3
|
26 |
CASTRONUOVO M M. Active space debris removal-a preliminary mission analysis and design. Acta Astronautica, 2011, 69, 848- 859.
doi: 10.1016/j.actaastro.2011.04.017
|
27 |
PASCAL M, DJEBLI A, BAKKALI L E. Laws of deployment/retrieval in tether connected satellites systems. Acta Astronautica, 1999, 45 (2): 61- 73.
doi: 10.1016/S0094-5765(99)00115-0
|
28 |
MISSEL J, MORTARI D. Path optimization for space sweeper with sling-sat:a method of active space debris removal. Advances in Space Research, 2013, 52, 1339- 1348.
doi: 10.1016/j.asr.2013.07.008
|
29 |
MISSEL J, MORTARI D. Removing space debris through sequential captures and ejections. Journal of Guidance, Control, and Dynamics, 2013, 36 (3): 743- 752.
doi: 10.2514/1.58768
|
30 |
ZEIDLER E, HACKBUSCH W, SCHWARZ H R, et al. Teubner-Taschenbuch der mathematik. LI W L. Trans. Beijing: Science Press, 2012.
|