Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (6): 1132-1143.doi: 10.21629/JSEE.2019.06.09
收稿日期:
2019-04-10
出版日期:
2019-12-20
发布日期:
2019-12-25
Xilin ZHANG1,2(), Yuejin TAN1(
), Zhiwei YANG1,*(
)
Received:
2019-04-10
Online:
2019-12-20
Published:
2019-12-25
Contact:
Zhiwei YANG
E-mail:zhangxilin16@nudt.edu.cn;yjtan@nudt.edu.cn;zhwyang88@hotmail.com
About author:
ZHANG Xilin was born in 1984. He received his B.S. degree in logistics engineering from Shandong University in 2007 and M.S. degree in logistics engineering from Jilin University in 2009. He is currently a Ph.D. candidate in College of Systems Engineering, National University of Defense Technology (NUDT). His main research interests include complex system engineering management.E-mail: Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1132-1143.
Xilin ZHANG, Yuejin TAN, Zhiwei YANG. Resource allocation optimization of equipment development task based on MOPSO algorithm[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1132-1143.
"
ID | Sub-task name | Minimum duration/d | Maximum cost/US$K | MQRD | |||||
1 | Prepare UAV preliminary design requirements and objectives | 1.9 | 2 | 3 | 8.6 | 9 | 13.5 | 400 | |
2 | Create UAV preliminary design configuration | 4.75 | 5 | 8.75 | 5.3 | 5.63 | 9.84 | 600 | |
3 | Prepare surfaced models & internal drawings | 2.66 | 2.8 | 4.2 | 3 | 3.15 | 4.73 | 600 | |
4 | Perform aerodynamics analyses & evaluation | 9 | 10 | 12.5 | 6.8 | 7.5 | 9.38 | 400 | |
5 | Create initial structural geometry | 14.3 | 15 | 26.3 | 128 | 135 | 236 | 600 | |
6 | Prepare structural & notes for finite element model | 9 | 10 | 11 | 10 | 11.3 | 12.4 | 500 | |
7 | Develop freebody diagrams & applied loads | 7.2 | 8 | 10 | 11 | 12 | 15 | 500 | |
8 | Perform weights & inertia analysis | 4.75 | 5 | 8.75 | 8.9 | 9.38 | 16.4 | 300 | |
9 | Perform stability and control analyses & evaluation | 18 | 20 | 22 | 20 | 22.5 | 24.8 | 500 | |
10 | Develop freebody diagram & applied loads | 9.5 | 10 | 17.5 | 21 | 22.5 | 39.4 | 400 | |
11 | Establish internal load distributions | 14.3 | 15 | 26.3 | 21 | 22.5 | 39.4 | 500 | |
12 | Evaluate structural strength, stiffness & life | 13.5 | 15 | 18.8 | 41 | 45 | 56.3 | 400 | |
13 | Preliminary manufacturing planning & analyses | 30 | 32.5 | 36 | 214 | 232 | 257 | 600 | |
14 | Prepare UAV proposal | 4.5 | 5 | 6.25 | 20 | 22.5 | 28.1 | 500 |
"
Resource allocation scheme | Duration/d | Cost/US$K | Average occurrence of resource conflicts | Average number of reworks |
400 600 600 400 600 500 500 300 500 400 500 400 600 500 | 118.1 | 690.1 | 29.1 | 11.2 |
240 361 365 240 372 341 300 182 301 243 308 400 371 300 | 135.1 | 622.7 | 10.1 | 10.5 |
353 360 368 242 360 306 304 180 300 245 329 400 366 427 | 121.2 | 626.9 | 10.7 | 10.6 |
354 363 360 297 368 316 302 181 300 244 330 400 367 500 | 118.4 | 627.9 | 11.7 | 10.9 |
400 369 377 313 432 318 302 190 308 241 353 240 402 500 | 111.8 | 650.3 | 18.0 | 13.5 |
369 364 385 290 437 308 301 180 312 240 374 241 365 494 | 113.2 | 644.5 | 16.5 | 13.4 |
1 | NELSON R G, AZARON A, AREF S. The use of a GERT based method to model concurrent product development processes. European Journal of Operational Research, 2016, 250 (2): 566- 578. |
2 |
DAI W X, WU W W, YU B, et al. Success probability orientated optimization model for resource allocation of the technological innovation multi-project system. Journal of Systems Engineering and Electronics, 2016, 27 (6): 1227- 1237.
doi: 10.21629/JSEE.2016.06.11 |
3 | HARTMANN S, BRISKORN D. A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 2010, 207 (1): 1- 14. |
4 | EDEM O P A. Priority rules in project scheduling:a case for random activity selection. Production Planning & Control, 2000, 11 (2): 165- 170. |
5 |
BROWNING T R, YASSINE A A. Resource-constrained multi-project scheduling:priority rule performance revisited. International Journal of Production Economics, 2010, 126 (2): 212- 228.
doi: 10.1016/j.ijpe.2010.03.009 |
6 | LI Y C, COIT D. Priority rules-based algorithmic design on two-sided assembly line balancing. Production Engineering, 2018, 12 (1): 95- 108. |
7 |
WANG X M, CHEN Q X, MAO N, et al. Proactive approach for stochastic RCMPSP based on multi-priority rule combinations. International Journal of Production Research, 2015, 53 (4): 1098- 1110.
doi: 10.1080/00207543.2014.946570 |
8 | CHEN Z, DEMEULEMEESTER E, BAI S J, et al. Efficient priority rules for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 2018, 270 (3): 957- 967. |
9 |
DIXIT V, VERMA P, RAJ P, et al. Resource and time criticality based block spatial scheduling in a shipyard under uncertainty. International Journal of Production Research, 2018, 56 (22): 6993- 7007.
doi: 10.1080/00207543.2018.1424369 |
10 | ÖNER-KöZEN M, MINNER S. Impact of priority sequencing decisions on on-time probability and expected tardiness of orders in make-to-order production systems with external due-dates. European Journal of Operational Research, 2017, 263 (2): 524- 539. |
11 |
CHAND S, HUYNH Q, SINGH H, et al. On the use of genetic programming to evolve priority rules for resource constrained project scheduling problems. Information Sciences, 2018, 432, 146- 163.
doi: 10.1016/j.ins.2017.12.013 |
12 |
LI H, ZHANG L, JIAO Y C. Discrete differential evolution algorithm for integer linear bilevel programming problems. Journal of Systems Engineering and Electronics, 2016, 27 (4): 912- 919.
doi: 10.21629/JSEE.2016.04.20 |
13 |
WANG L, HU H L, AI X Y, et al. Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm. Energy, 2018, 153, 801- 815.
doi: 10.1016/j.energy.2018.04.078 |
14 |
ZHU A J, XU C P, LI Z, et al. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. Journal of Systems Engineering and Electronics, 2015, 26 (2): 317- 328.
doi: 10.1109/JSEE.2015.00037 |
15 |
WANG L, LV S X, ZENG Y R, et al. Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China. Energy, 2018, 155, 1013- 1031.
doi: 10.1016/j.energy.2018.04.175 |
16 | QI J J, GUO B, LEI H T, et al. Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization. Journal of Systems Engineering and Electronics, 2014, 25 (1): 69- 76. |
17 |
RAUNAK M S, OSTERWEIL L J. Resource management for complex, dynamic environments. IEEE Trans. on Software Engineering, 2013, 39 (3): 384- 402.
doi: 10.1109/TSE.2012.31 |
18 | XIONG J, LEUS R, YANG Z Y, et al. Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project. European Journal of Operational Research, 2016, 251 (2): 662- 675. |
19 |
LIN J T, CHIU C C. A hybrid particle swarm optimization with local search for stochastic resource allocation problem. Journal of Intelligent Manufacturing, 2018, 29 (3): 481- 495.
doi: 10.1007/s10845-015-1124-7 |
20 |
YI Y, LI X X, GU C Q. Hybrid particle swarm optimization for multiobjective resource allocation. Journal of Systems Engineering and Electronics, 2008, 19 (5): 959- 964.
doi: 10.1016/S1004-4132(08)60182-6 |
21 | BEȘIKCI U, BILGE Ü, ULUSOY G. Multi-mode resource constrained multi-project scheduling and resource portfolio problem. European Journal of Operational Research, 2015, 240 (1): 22- 31. |
22 | LIU C C, XIANG X, ZHANG C R, et al. A column generation based distributed scheduling algorithm for multi-mode resource constrained project scheduling problem. Computers & Industrial Engineering, 2018, 125, 258- 278. |
23 |
KANGASPUNTA J, SALO A. Expert judgments in the cost-effectiveness analysis of resource allocations:a case study in military planning. OR Spectrum, 2014, 36 (1): 161- 185.
doi: 10.1007/s00291-013-0325-8 |
24 |
GUO S S, DU B G, PENG Z, et al. Manufacturing resource combinatorial optimization for large complex equipment in group manufacturing:a cluster-based genetic algorithm. Mechatronics, 2015, 31, 101- 115.
doi: 10.1016/j.mechatronics.2015.03.005 |
25 |
CERTA A, ENEA M, GALANTE G, et al. Multi-objective human resources allocation in R & D projects planning. International Journal of Production Research, 2009, 47 (13): 3503- 3523.
doi: 10.1080/00207540701824233 |
26 | YAGHOUBI S, NOORI S, AZARONBD A. Resource allocation in dynamic PERT networks with finite capacity. European Journal of Operational Research, 2011, 215 (3): 670- 678. |
27 | TAO S, DONG Z S. Multi-mode resource-constrained project scheduling problem with alternative project structures. Computers & Industrial Engineering, 2018, 125, 333- 347. |
28 |
LASLO Z, GOLDBERG A I. Resource allocation under uncertainty in a multi-project matrix environment:is organizational conflict inevitable?. International Journal of Project Management, 2008, 26 (8): 773- 788.
doi: 10.1016/j.ijproman.2007.10.003 |
29 | WANG Y T, HE Z W, KERKHOVE L P, et al. On the performance of priority rules for the stochastic resource constrained multi-project scheduling problem. Computers & Industrial Engineering, 2017, 114, 223- 234. |
30 | LEUS R, HERROELEN W. Stability and resource allocation in project planning. ⅡE Trans.ctions, 2004, 36 (7): 667- 682. |
31 | LIU X Y, LU Z Q. Modeling of and algorithm for resource-constrained project scheduling problem with resource allocation dependent processing time. Journal of Shanghai Jiaotong University, 2017, 51 (1): 82- 89. |
32 | CHAKRABORTTY R K, SARKER R A, ESSAM D L. Resource constrained project scheduling with uncertain activity durations. Computers & Industrial Engineering, 2017, 112, 537- 550. |
33 | BRUNI M E, PUGLIESE L D P, BERALDI P, et al. An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations. Omega, 2017, 71 (C): 66- 84. |
34 | ZHANG X L, TAN Y J, YANG Z W. Simulation modeling of high-end equipment development task influenced by multiple uncertainty factors. Systems Engineering and Electronics, 2018, 40 (6): 1265- 1273. |
35 |
COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2004, 8 (3): 256- 279.
doi: 10.1109/TEVC.2004.826067 |
36 | BRITTO A, POZO A. Using reference points to update the archive of MOPSO algorithms in many-objective optimization. Neurocomputing, 2014, 127 (3): 78- 87. |
37 | WANG Y B, ZHAO J M, CHENG Z H, et al. Optimization for spare parts allocation in multi-echelon support system based on improved MOPSO. Systems Engineering and Electronics, 2015, 37 (7): 1581- 1586. |
38 |
BROWNING T R, EPPINGER S D. Modeling impacts of process architecture on cost and schedule risk in product development. IEEE Trans. on Engineering Management, 2002, 49 (4): 428- 442.
doi: 10.1109/TEM.2002.806709 |
39 |
CHO S H, EPPINGER S D. A simulation-based process model for managing complex design projects. IEEE Trans. on Engineering Management, 2005, 52 (3): 316- 328.
doi: 10.1109/TEM.2005.850722 |
40 | CLERC M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization. Proc. of the IEEE Congress on Evolutionary Computation, 1999, 1951- 1957. |
41 |
FIGUEIREDO E M N, LUDERMIR T B, BASTOS-FILHO C J A. Many objective particle swarm optimization. Information Sciences, 2016, 374, 115- 134.
doi: 10.1016/j.ins.2016.09.026 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||