[an error occurred while processing this directive]

Journal of Systems Engineering and Electronics ›› 2012, Vol. 23 ›› Issue (2): 225-232.doi: 10.1109/JSEE.2012.00029

• • 上一篇    下一篇

Dual membership SVM method based on spectral clustering

  

  • 出版日期:2012-04-20 发布日期:2010-01-03

Dual membership SVM method based on spectral clustering

Xiaodong Song and Liyan Han*   

  1. School of Economics and Management, Beihang University, Beijing 100191, P. R. China
  • Online:2012-04-20 Published:2010-01-03

Abstract:

A new fuzzy support vector machine algorithm with dual membership values based on spectral clustering method is proposed to overcome the shortcoming of the normal support vector machine algorithm, which divides the training datasets into two absolutely exclusive classes in the binary classification, ignoring the possibility of “overlapping” region between the two training classes. The proposed method handles sample “overlap” efficiently with spectral clustering, overcoming the disadvantages of over-fitting well, and improving the data mining efficiency greatly. Simulation provides clear evidences to the new method.