1 |
WANG Y, JIANG C, WU Q. Attitude tracking control for variable structure near space vehicles based on switched nonlinear systems. Chinese Journal of Aeronautics, 2013, 26 (1): 186- 193.
doi: 10.1016/j.cja.2012.12.009
|
2 |
GUO C, LIANG X. Integrated guidance and control based on block backstepping sliding mode and dynamic control allocation. Proceeding of the Institution of Mechanical Engineering Part G: Journal of Aerospace Engineering, 2014, 229 (9): 1559- 1574.
|
3 |
SHAO X, WANG H. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertianties. ISA Transactions, 2015, 54, 27- 38.
doi: 10.1016/j.isatra.2014.06.010
|
4 |
VENKATARAMAN S T, GULATI S. Control of nonlinear systems using terminal sliding modes. ASME Journal of Dynamic Systems, Measurement and Control, 1993, 115 (4): 554- 560.
|
5 |
SONG Z K, LI H X, SUN K B. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. ISA Transactions, 2014, 1 (53): 117- 124.
|
6 |
AGHABABA M P, MOHAMMAD P. Design of hierarchical terminal sliding mode control scheme for fractional-order systems. IET Science Measurement & Technology, 2015, 9 (1): 122- 133.
|
7 |
KHARI S, RAHMANI Z, REZAIE B. Designing fuzzy logic controller based on combination of terminal sliding mode and state feedback controllers for stabilizing chaotic behaviour in rod-type plasma torch system. Transactions of the Institute of Measurement & Control, 2016, 38 (2): 150- 164.
|
8 |
ZHONG C X, GUO Y, YU Z. Finite-time attitude control for flexible spacecraft with unknown bounded disturbance. Transactions of the Institute of Measurement & Control, 2016, 38 (2): 240- 249.
|
9 |
FENG Y, YU X H, MAN Z. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38 (12): 2159- 2167.
doi: 10.1016/S0005-1098(02)00147-4
|
10 |
YU S, YU X, SHIRINZADEH B, et al. Continuous finite-time control for manipulators with terminal sliding mode. Automatica, 2005, 41 (11): 1957- 1964.
doi: 10.1016/j.automatica.2005.07.001
|
11 |
LIU G W, LI Z. Terminal sliding mode control for time-delay system with unmatched time-varying uncertainties. Systems Engineering and Electronics, 2009, 31 (5): 1180- 1183.
|
12 |
WANG L, CHAI T, ZHAI L. Neural-network-Based on terminal sliding mode control of robotic manipulators including actuator dynamics. IEEE Trans. on Industrial Electronics, 2009, 56(9): 3296-3304.
|
13 |
ZOU A, KUMAR K D, HOU Z, et al. Fintite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, 2011, 41(4): 950-963.
|
14 |
LU K, XIA Y. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica, 2013, 49 (12): 3591- 3599.
doi: 10.1016/j.automatica.2013.09.001
|
15 |
CHIU C. Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica, 2012, 48 (2): 316- 326.
doi: 10.1016/j.automatica.2011.08.055
|
16 |
CASTAÑOS F, FRIDMAN L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. on Automatic Control, 2006, 51(5): 853-858.
|
17 |
SCARRATT J C, ZINOBER A S I, MILLS R E, et al. Dynamical adaptive first and second-order sliding backstepping control of nonlinear nontriangular uncertain systems. ASME Journal of Dynamic Systems, Measurement and Control, 2000, 122 (4): 746- 752.
doi: 10.1115/1.1321051
|
18 |
ZHANG J H, LIU X W, XIAN Y Q, et al. Disturbance observer based integral sliding mode control for systems with mismatched disturbances. IEEE Trans. on Industrial Electronics, 2016, 63(11): 7040-7048.
|
19 |
AVILA H H, LOUKIANOV A G, CAÑEDOC J M. Nested integral sliding modes of large sacale power systems. Proc. of the 46th IEEE Confernece on Decision Control, 2007: 1993-1998.
|
20 |
LEVANT A. Robust exact differentiation via sliding mode technique. Automatica, 1998, 34 (3): 379- 384.
doi: 10.1016/S0005-1098(97)00209-4
|
21 |
YU X, MAN Z. Fast terminal sliding mode control design for nonlinear dynamic systems. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 261-264.
|
22 |
TIE L, CAI K. A general form and improvement of fast terminal sliding mode. Proc. of the 8th World Congress on Intelligent Control and Automation, 2010: 2496-2501.
|