Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (1): 132-143.doi: 10.21629/JSEE.2019.01.13
收稿日期:
2017-07-06
出版日期:
2019-02-27
发布日期:
2019-02-27
Jiale GAO*(), Qinghua XING(
), Chengli FAN(
), Zhibing LIANG(
)
Received:
2017-07-06
Online:
2019-02-27
Published:
2019-02-27
Contact:
Jiale GAO
E-mail:gaojiale_kgd@163.com;liuxqh@126.com;ff516@163.com;liangzhibing@163.com
About author:
GAO Jiale was born in 1990. He received his M.S. degree from Air Force Engineering University (AFEU) in 2015. He is currently pursuing his Ph.D. degree at AFEU. His research interests include the evolutionary multi-objective optimization, and sensor resource scheduling. E-mail:Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 132-143.
Jiale GAO, Qinghua XING, Chengli FAN, Zhibing LIANG. Double adaptive selection strategy for MOEA/D[J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 132-143.
"
Name | Range | Characteristics | ||
F1 | 30 | 2 | Convex, unimodal | |
F2 | 30 | 2 | Convex, multimodal | |
F3 | 30 | 2 | Convex, multimodal | |
F4 | 30 | 2 | Convex, multimodal | |
WFG1 | 12 | 3 | Convex, unimodal, mixed | |
WFG2 | 12 | 3 | Convex, multimodal, disconnected | |
WFG3 | 12 | 3 | Liner, unimodal, degenerate | |
WFG4 | 12 | 3 | Convex, multimodal | |
DTLZ1 | 10 | 3 | Nonconvex, multimodal | |
DTLZ2 | 10 | 3 | Nonconvex, unimodal |
"
Problem | DAS3 | DAS2 | DAS1 | |
F1 | Mean | 3.268E-02 | 1.990E-03 | 1.999E-03 |
IQR | 3.400E-03 | 2.420E-05 | 1.700E-05 | |
Rank | 3 | 1 | 2 | |
F2 | Mean | 3.737E-02 | 4.276E-03 | 4.430E-03 |
IQR | 3.520E-03 | 1.140E-03 | 1.280E-03 | |
Rank | 3 | 1 | 2 | |
F3 | Mean | 4.169E-02 | 3.295E-03 | 4.354E-03 |
IQR | 3.540E-03 | 4.560E-04 | 2.050E-03 | |
Rank | 3 | 1 | 2 | |
F4 | Mean | 4.672E-02 | 5.277E-03 | 3.145E-03 |
IQR | 9.310E-03 | 3.550E-03 | 7.630E-04 | |
Rank | 3 | 2 | 1 | |
WFG1 | Mean | 4.122E-01 | 3.059E-01 | 2.884E-01 |
IQR | 4.050E-02 | 5.610E-02 | 4.220E-02 | |
Rank | 3 | 2 | 1 | |
WFG2 | Mean | 4.855E-01 | 4.540E-01 | 4.316E-01 |
IQR | 8.220E-03 | 4.000E-02 | 5.910E-02 | |
Rank | 3 | 2 | 1 | |
WFG3 | Mean | 4.890E-02 | 4.619E-02 | 4.627E-02 |
IQR | 8.210E-04 | 1.890E-04 | 8.410E-03 | |
Rank | 3 | 1 | 2 | |
WFG4 | Mean | 2.614E-01 | 2.320E-01 | 2.304E-01 |
IQR | 8.400E-03 | 4.000E-03 | 2.210E-03 | |
Rank | 3 | 2 | 1 | |
DTLZ1 | Mean | 1.465E-02 | 1.360E-02 | 1.370E-02 |
IQR | 1.010E-04 | 5.470E-05 | 3.610E-07 | |
Rank | 3 | 1 | 2 | |
DTLZ2 | Mean | 5.076E-02 | 4.900E-02 | 4.886E-02 |
IQR | 1.430E-04 | 1.780E-04 | 2.020E-04 | |
Rank | 3 | 2 | 1 | |
Rank sum | 30 | 15 | 15 | |
0/10/0 | 5/1/4 |
"
Problem | DAS3 | DAS2 | DAS1 | |
F1 | Mean | 1.103E-02 | 3.008E-03 | 2.934E-03 |
IQR | 1.850E-02 | 6.510E-05 | 2.800E-04 | |
Rank | 3 | 2 | 1 | |
F2 | Mean | 4.143E-02 | 2.119E-02 | 2.145E-02 |
IQR | 1.080E-01 | 4.730E-02 | 2.290E-02 | |
Rank | 3 | 1 | 2 | |
F3 | Mean | 3.468E-03 | 3.255E-03 | 4.910E-03 |
IQR | 4.090E-03 | 2.360E-03 | 3.860E-03 | |
Rank | 2 | 1 | 3 | |
F4 | Mean | 5.601E-03 | 3.271E-03 | 2.749E-03 |
IQR | 4.590E-03 | 3.180E-03 | 4.580E-04 | |
Rank | 3 | 2 | 1 | |
WFG1 | Mean | 8.347E-02 | 1.135E-01 | 8.561E-02 |
IQR | 1.600E-02 | 2.130E-02 | 1.960E-02 | |
Rank | 1 | 3 | 2 | |
WFG2 | Mean | 7.098E-02 | 7.427E-02 | 7.920E-02 |
IQR | 4.050E-02 | 2.000E-02 | 2.930E-03 | |
Rank | 1 | 2 | 3 | |
WFG3 | Mean | 1.910E-01 | 1.908E-01 | 1.840E-01 |
IQR | 3.930E-03 | 3.430E-03 | 3.900E-04 | |
Rank | 3 | 2 | 1 | |
WFG4 | Mean | 1.870E-01 | 1.889E-01 | 1.703E-01 |
IQR | 9.660E-03 | 1.020E-02 | 3.650E-03 | |
Rank | 2 | 3 | 1 | |
DTLZ1 | Mean | 7.696E-02 | 7.810E-02 | 7.871E-05 |
IQR | 1.070E-05 | 5.660E-05 | 1.010E-05 | |
Rank | 1 | 2 | 3 | |
DTLZ2 | Mean | 3.699E-02 | 3.808E-02 | 3.796E-02 |
IQR | 1.210E-03 | 7.870E-04 | 9.510E-06 | |
Rank | 1 | 3 | 2 | |
Rank sum | 20 | 21 | 19 | |
4/6/0 | 2/5/3 |
"
Problem | NSGAII | MOEAD | MOEAD-DRA | MOEAD-AGR | MOEAD-DAS | |
F1 | Mean | 2.014E-03 | 4.173E-03 | 1.996E-03 | 3.425E-03 | 1.999E-03 |
IQR | 1.160E-05 | 8.710E-04 | 6.790E-06 | 1.010E-04 | 1.700E-05 | |
Rank | 3 | 5 | 1 | 4 | 2 | |
F2 | Mean | 1.794E-02 | 1.695E-01 | 4.848E-03 | 2.593E-02 | 4.430E-03 |
IQR | 3.360E-03 | 7.210E-02 | 3.570E-04 | 6.510E-03 | 1.280E-03 | |
Rank | 3 | 5 | 2 | 4 | 1 | |
F3 | Mean | 6.468E-03 | 4.851E-02 | 4.742E-03 | 1.143E-02 | 4.354E-03 |
IQR | 5.480E-04 | 2.600E-02 | 2.210E-04 | 4.030E-03 | 2.050E-03 | |
Rank | 3 | 5 | 2 | 4 | 1 | |
F4 | Mean | 8.164E-03 | 6.125E-02 | 6.740E-03 | 6.945E-03 | 3.145E-03 |
IQR | 9.820E-04 | 3.050E-02 | 1.180E-03 | 8.760E-04 | 7.630E-04 | |
Rank | 4 | 5 | 2 | 3 | 1 | |
WFG1 | Mean | 1.659E+00 | 2.356E-01 | 1.242E+00 | 1.800E-01 | 2.884E-01 |
IQR | 5.330E-02 | 5.900E-03 | 9.650E-02 | 1.280E-02 | 4.220E-02 | |
Rank | 5 | 2 | 4 | 1 | 3 | |
WFG2 | Mean | 4.400E-01 | 6.749E-01 | 4.391E-01 | 1.307E-01 | 4.316E-01 |
IQR | 1.500E-02 | 1.720E-01 | 4.080E-02 | 4.570E-03 | 5.910E-02 | |
Rank | 4 | 5 | 3 | 1 | 2 | |
WFG3 | Mean | 5.775E-02 | 8.325E-02 | 5.531E-02 | 5.494E-02 | 4.627E-02 |
IQR | 1.450E-03 | 7.420E-04 | 3.990E-04 | 3.260E-04 | 8.410E-03 | |
Rank | 4 | 5 | 3 | 2 | 1 | |
WFG4 | Mean | 2.436E-01 | 1.784E-01 | 2.525E-01 | 1.884E-01 | 2.304E-01 |
IQR | 2.870E-03 | 3.440E-03 | 5.040E-03 | 3.090E-03 | 2.210E-03 | |
Rank | 4 | 1 | 5 | 2 | 3 | |
DTLZ1 | Mean | 1.984E-02 | 1.975E-02 | 1.979E-02 | 1.901E-02 | 1.370E-02 |
IQR | 2.540E-05 | 3.130E-05 | 3.000E-05 | 5.340E-04 | 3.610E-07 | |
Rank | 5 | 3 | 4 | 2 | 1 | |
DTLZ2 | Mean | 4.894E-02 | 3.638E-02 | 4.878E-02 | 4.772E-02 | 4.886E-02 |
IQR | 1.550E-04 | 3.490E-07 | 1.350E-04 | 7.550E-04 | 2.020E-04 | |
Rank | 5 | 1 | 3 | 2 | 4 | |
Rank sum | 40 | 37 | 29 | 25 | 19 | |
0/9/1 | 2/8/0 | 1/8/1 | 2/8/0 |
"
Problem | NSGAII | MOEAD | ADEMO/D | MOEA/D-AGR | MOEA/D-DAS | |
F1 | Mean | 5.138E-03 | 5.240E-03 | 5.077E-03 | 3.712E-03 | 2.934E-03 |
IQR | 1.010E-04 | 6.710E-05 | 1.300E-04 | 2.390E-04 | 2.800E-04 | |
Rank | 4 | 5 | 3 | 2 | 1 | |
F2 | Mean | 8.175E-02 | 9.165E-03 | 1.411E-02 | 1.904E-02 | 2.145E-02 |
IQR | 7.140E-02 | 3.190E-03 | 8.670E-03 | 2.350E-02 | 2.290E-02 | |
Rank | 5 | 1 | 2 | 3 | 4 | |
F3 | Mean | 6.476E-02 | 6.509E-03 | 1.553E-02 | 6.150E-03 | 4.910E-03 |
IQR | 7.130E-02 | 7.270E-04 | 2.090E-02 | 4.340E-03 | 3.860E-03 | |
Rank | 5 | 3 | 4 | 2 | 1 | |
F4 | Mean | 2.158E-02 | 1.612E-02 | 1.023E-02 | 2.110E-02 | 2.749E-03 |
IQR | 2.560E-02 | 1.350E-02 | 4.770E-03 | 1.640E-02 | 4.580E-04 | |
Rank | 5 | 4 | 3 | 2 | 1 | |
WFG1 | Mean | 1.258E-01 | 1.751E-01 | 1.472E-01 | 1.110E-01 | 8.561E-02 |
IQR | 2.400E-02 | 1.190E-01 | 1.350E-01 | 9.730E-03 | 1.960E-02 | |
Rank | 3 | 5 | 4 | 2 | 1 | |
WFG2 | Mean | 1.301E-01 | 1.224E-01 | 1.117E-01 | 1.518E-01 | 7.920E-02 |
IQR | 6.360E-02 | 2.690E-02 | 9.160E-03 | 4.990E-02 | 2.930E-03 | |
Rank | 4 | 3 | 2 | 5 | 1 | |
WFG3 | Mean | 1.494E-01 | 1.551E-01 | 1.478E-01 | 8.373E-02 | 1.840E-01 |
IQR | 2.150E-03 | 3.320E-03 | 2.970E-03 | 3.900E-03 | 3.900E-04 | |
Rank | 3 | 4 | 2 | 1 | 5 | |
WFG4 | Mean | 2.444E-01 | 2.682E-01 | 2.632E-01 | 1.507E-01 | 1.703E-01 |
IQR | 1.070E-02 | 1.120E-02 | 6.560E-03 | 4.980E-03 | 3.650E-03 | |
Rank | 3 | 5 | 4 | 1 | 2 | |
DTLZ1 | Mean | 2.020E-02 | 2.027E-02 | 1.571E-02 | 1.562E-02 | 7.871E-05 |
IQR | 3.900E-04 | 3.160E-04 | 3.850E-04 | 5.360E-04 | 1.010E-05 | |
Rank | 4 | 5 | 3 | 2 | 1 | |
DTLZ2 | Mean | 5.773E-02 | 5.563E-02 | 5.674E-02 | 3.764E-02 | 3.796E-02 |
IQR | 4.520E-04 | 1.820E-03 | 7.820E-04 | 2.560E-03 | 9.510E-06 | |
Rank | 5 | 3 | 4 | 1 | 2 | |
Rang sum | 41 | 38 | 31 | 21 | 19 | |
0/10/0 | 1/9/0 | 0/10/0 | 3/7/0 |
"
Problem | MOEAD | MOEAD-DRA | MOEAD-AGR | MOEAD-DAS |
F1 | 78.9 | 81.4 | 88.7 | 93.7 |
F2 | 76.1 | 78.6 | 85.9 | 92.6 |
F3 | 75.9 | 78.3 | 85.1 | 96.3 |
F4 | 76.2 | 79.6 | 88.4 | 98.2 |
WFG1 | 111.5 | 114.0 | 124.7 | 129.4 |
WFG2 | 109.2 | 111.7 | 118.0 | 121.7 |
WFG3 | 105.9 | 108.4 | 119.1 | 125.5 |
WFG4 | 105.6 | 109.1 | 116.4 | 122.6 |
DTLZ1 | 70.2 | 75.6 | 86.6 | 93.8 |
DTLZ2 | 76.4 | 79.9 | 87.0 | 95.6 |
1 |
XU X L, CAO L L, WANG X H. Resource pre-allocation algorithms for low-energy task scheduling of cloud computing. Journal of Systems Engineering and Electronics, 2016, 27 (2): 457- 469.
doi: 10.1109/JSEE.2016.00047 |
2 | TAVANA M, LI Z, MOBIN M, et al. Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications an International Journal, 2016, 50 (C): 17- 39. |
3 | DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space. Complex Systems, 1994, 9 (3): 115- 148. |
4 |
STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328 |
5 | LIN Q, CHEN J, ZHAN Z H, et al. A hybrid evolutionary immune algorithm for multiobjective optimization problems. IEEE Trans. on Evolutionary Computation, 2016, 20 (5): 711- 729. |
6 | QI Y, HOU Z, YIN M, et al. An immune multi-objective optimization algorithm with differential evolution inspired recombination. Applied Soft Computing, 2015, 29 (C): 395- 410. |
7 | ZHU Q, LIN Q, DU Z, et al. A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Information Sciences, 2016, 345 (C): 177- 198. |
8 | VENSKE S M, GONÇALVES R A, DELGADO M R. ADEMO/D:multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing, 2014, 127 (127): 65- 77. |
9 | LI K, FIALHO A, KWONG S, et al. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2014, 18 (1): 114- 130. |
10 | LIN Q Z, LIU Z W, YAN Q, et al. Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Information Sciences, 2016, 339 (C): 332- 352. |
11 | WANG Z, ZHANG Q, ZHOU A, et al. Adaptive replacement strategies for MOEA/D. IEEE Trans. on Cybernetics, 2017, 46 (2): 474- 486. |
12 | ZHANG Q, LI H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2007, 11 (6): 712- 731. |
13 | ZHANG Q F, LIU W, LI H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Proc. of the IEEE Congress on Evolutionary Computation, 2009: 203-208. |
14 | HILLERMEIER C. Nonlinear multiobjective optimization. Heidelberg: Birkhaüser Verlag, 2001. |
15 |
SINDHYA K, RUUSKA S, HAANPÄÜ T, et al. A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft Computing, 2011, 15 (10): 2041- 2055.
doi: 10.1007/s00500-011-0704-5 |
16 | ELSAYED S M, SARKER R A, ESSAM D L. GA with a new multi-parent crossover for constrained optimization. Proc. of the IEEE Evolutionary Computation, 2011: 857-864. |
17 | QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. on Evolutionary Computation, 2009, 13 (2): 398- 417. |
18 | LI H, ZHANG Q. Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. on Evolutionary Computation, 2009, 13 (2): 284- 302. |
19 | DEB K, THIELE L, LAUMANNS M, et al. Scalable multiobjective optimization test problems. Proc. of the IEEE Congress on Evolutionary Computation, 2002: 825-830. |
20 | HUBAND S, BARONE L, WHILE L, et al. A scalable multiobjective test problem toolkit. Lecture Notes in Computer Science, 2005, 3410, 280- 295. |
21 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6 (2): 182- 197. |
22 | COELLO C A C, CORTÉS N C. Solving multiobjective optimization problems using an artificial immune system. Genetic Programming & Evolvable Machines, 2005, 6 (2): 163- 190. |
23 | MENCHACA-MENDEZ A, COELLO C A C. Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Information Sciences, 2016, 332 (C): 131- 152. |
24 | DEB K, BEYER H G. Self-adaptive genetic algorithms with simulated binary crossover. Evolutionary Computation, 2001, 9 (2): 197- 221. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||