Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (5): 1007-1024.doi: 10.21629/JSEE.2019.05.17
收稿日期:
2018-12-13
出版日期:
2019-10-08
发布日期:
2019-10-09
Baiquan LU(), Chenlong NI*(
), Zhongwei ZHENG(
), Tingzhang LIU(
)
Received:
2018-12-13
Online:
2019-10-08
Published:
2019-10-09
Contact:
Chenlong NI
E-mail:lbq123188@aliyun.com;chalone0808@icloud.com;zw.zheng2@gmail.com;liutzh@staff.shu.edu.cn
About author:
LU Baiquan was born in 1963. He received his Ph.D. degree in thermal engineering from Tsinghua University in 1997. He is now an associate professor at School of Mechatronic Engineering and Automation, Shanghai University. His research interests include computational intelligence and nonlinear system control. E-mail: Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 1007-1024.
Baiquan LU, Chenlong NI, Zhongwei ZHENG, Tingzhang LIU. A global optimization algorithm based on multi-loop neural network control[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 1007-1024.
"
Function | Dimension | Feasible region | Global optimum value |
"
Function | Parameter of the filled function | ||||
1e-3/1e-3/1e-3/1e-3/1e-3 | 1e-3/1e-5/1e-4 | 3.3e-4 | 10 000/3 000/100 | ||
0.01/0.01/0.01/0.01/0.01 | 1e-3/1e-1/1e-5 | 2e-4 | 50 000/6 000/100 | ||
1/1/1/1e-6/1 | 1.0/1e+2/1e-2 | 7e-6 | 10 000/2 500/80 | ||
0.01/0.01/0.01/0.01/0.01 | 1/1e-6/1e-5 | 1.2e-4 | 10 000/3 000/150 | ||
0.1/0.1/0.1/1e-5/0.1 | 2e-1/1e-2/1e-4 | 1e-4 | 10 000/3 000/80 | ||
0.01/0.01/0.01/1e-4/0.1 | 5e-2/1e-1/2e-4 | 1e-3 | 1 000/180/60 | ||
1e-2/1e-2/1e-2/1e-5/0.1 | 7e-4/1e-5/1e-4 | 2e-4 | 40 000/6 000/100 | ||
1e-2/1e-2/1e-2/1e-4/1e-2 | 9e-3/1e-5/1e-2 | 1e-3 | 10 000/120/60 | ||
1e-2/1e-2/1e-2/1e-4/1e-2 | 1e-2/1e-2/1e-3 | 1e-4 | 6 000/2 000/60 | ||
0.1/0.1/0.1/0.01/0.1 | 9e-5/1e-4/1e-4 | 1e-4 | 20 000/4 000/60 | ||
0.1/0.1/0.1/0.1/0.1 | 9e-2/1e-3/1e-4 | 2e-1 | 1 500/200/60 | ||
0.1/0.1/0.1/0.1/0.1 | 1e-3/0.01/1e-4 | 1e-2 | 140/500/60 | ||
0.1/0.1/0.1/0.1/0.1 | 5.8/1e-4/1e-4 | 1e-3 | 3 000/1 000/100 | ||
0.1/0.1/0.1/0.1/0.1 | 8.8e-4/8.5e-4/9e-4 | 5e-3 | 50 000/1 500/250 | ||
0.1/0.1/0.1/0.1/0.1 | 9.5e-4/8.8e-4/5e-4 | 5e-3 | 35 000/1 800/300 | ||
0.01/0.01/0.01/1e-4/0.01 | 1e-5/1e-5/1e-5 | 1e-5 | 20 000/2 000/350 | ||
0.1/0.1/0.1/0.1/0.1 | 1e-5/1e-5/2e-5 | 3e-4 | 10 000/600/250 | ||
0.1/0.1/0.1/0.1/0.1 | 1e-5/4e-3/1e-3 | 5e-3 | 10 000/5 000/80 |
"
Function | Average value | Best value | Worst value | Confidence interval | CPU time/s | ||
0 | 0 | 0 | 0 | 30/30 | 33.3 | 1e-15 | |
0 | 0 | 0 | 0 | 30/30 | 82.1 | 1e-15 | |
1.48e-17 | 0 | 3.33e-16 | 1.48e-17 | 30/30 | 15.5 | 1e-15 | |
5.66e-11 | 1.33e-12 | 3.02e-10 | 5.66e-11 | 30/30 | 27.5 | 1e-9 | |
5.30e-18 | 1.50e-19 | 2.60e-17 | 5.30e-18 | 30/30 | 32.5 | 1e-15 | |
-78.332 331 41 | -78.332 331 41 | -78.332 331 41 | -78.332 331 41 | 30/30 | 5.83 | 1e-8 | |
3.75e-17 | 1.50e-19 | 3.92e-16 | 3.75e-17 | 30/30 | 78.6 | 1e-15 | |
0 | 0 | 0 | 0 | 30/30 | 5.1 | 1e-15 | |
1.11e-24 | 6.36e-26 | 5.26e-24 | 1.11e-24 | 30/30 | 9.7 | 1e-15 | |
1.26e-16 | 1.73e-21 | 1.67e-15 | 1.26e-16 | 30/30 | 156.6 | 1e-15 | |
-3.322 368 011 | -3.322 368 011 | -3.322 368 011 | -3.322 368 011 | 30/30 | 0.18 | 1e-9 | |
-186.730 908 8 | -186.730 908 8 | -186.730 908 8 | -186.730 908 8 | 30/30 | 0.98 | 1e-7 | |
-10.153 199 68 | -10.153 199 68 | -10.153 199 68 | -10.153 199 68 | 30/30 | 1.18 | 1e-8 | |
-10.402 940 57 | -10.402 940 57 | -10.402 940 57 | -10.402 940 57 | 30/30 | 11.58 | 1e-8 | |
-10.536 409 82 | -10.536 409 82 | -10.536 409 82 | -10.536 409 82 | 30/30 | 27.4 | 1e-9 | |
0 | 0 | 0 | 0 | 30/30 | 1 668 | 1e-15 | |
0.000 381 827 | 0.000 381 827 | 0.000 381 83 | 0.000 381 827 | 30/30 | 10.34 | 1e-8 |
"
Spring diameter | |
Spring wire diameter | |
Spring total number of turns | |
Rotation ratio | |
Spring terminal type factor | |
Proportion of spring material/(N/mm | |
Shear modulus of the spring material/(N/mm | |
Shearing stress of the spring wire/(N/mm | |
Spring support laps | |
Working load/N |
"
Algorithm | FEP | OGA/Q | CMA-ES | JADE | OLPSO-L | GPSO | Fsolve* | LargeScale* | GradObj* | The proposed |
4.6e-2 | 0 | 1.76e+2 | 0 | 0 | 0 | 553 | 259 | 517 | 0 | |
Rank | 2 | 1 | 3 | 1 | 1 | 1 | 6 | 4 | 5 | 1 |
1.8e-2 | 4.4e-16 | 12.124 | 4.4e-15 | 4.14e-15 | 4.4e-015 | 212 | 86 | 19.5 | 0 | |
Rank | 6 | 2 | 7 | 4 | 3 | 5 | 10 | 9 | 8 | 1 |
1.6e-2 | 0 | 9.59e-16 | 2.e-4 | 0 | 0.003 7 | 0 | 4.87E-13 | 0 | 1.48e-17 | |
Rank | 6 | 1 | 3 | 5 | 1 | 5 | 1 | 4 | 1 | 2 |
5.06 | 0.75 | 2.33e-15 | 0.32 | 1.26 | 0.042 0 | 618 | 6.64E-01 | 0.53 | 3.75e-17 | |
Rank | 9 | 7 | 2 | 4 | 8 | 3 | 10 | 6 | 5 | 1 |
5.7e-4 | 0 | 4.56e-16 | 1.3e-54 | 1.1e-38 | 1.8326e-52 | 0 | 2.4E-35 | 1E-88 | 0 | |
Rank | 8 | 1 | 7 | 3 | 5 | 4 | 1 | 6 | 2 | 1 |
14.98 | 3.03e-2 | 3.15e+3 | 7.1 | 3.8e-4 | 3.9e-004 | 12 700 | 4.95E+03 | 5.15E+03 | 0.000 381 827 | |
Rank | 6 | 4 | 7 | 5 | 3 | 2 | 10 | 8 | 9 | 1 |
Average rank | 6.17 | 2.83 | 4.83 | 3.67 | 3.5 | 3.3 | 6.3 | 6.17 | 5 | 1.17 |
Final rank | 8 | 2 | 6 | 5 | 4 | 3 | 9 | 8 | 7 | 1 |
1 |
USTUNDAG B, EKSIN I, BIR A. A new approach to global optimization using a close loop control system with fuzzy logic controller. Advances in Engineering Software, 2002, 33 (6): 309- 318.
doi: 10.1016/S0965-9978(02)00036-4 |
2 |
LEE J, CHIANG H D. A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems. IEEE Trans. on Automatic Control, 2004, 49 (6): 888- 899.
doi: 10.1109/TAC.2004.829603 |
3 |
MOTEE N, JADBABAIE A. Distributed multi-parametric quadratic programming. IEEE Trans. on Automatic Control, 2009, 54 (10): 2279- 2289.
doi: 10.1109/TAC.2009.2014916 |
4 |
LIU Q S, HUANG T W, WANG J. One-layer continuousand discrete-time projection neural networks for solving variational inequalities and related optimization problems. IEEE Trans. on Neural Network, 2014, 25 (7): 1308- 1318.
doi: 10.1109/TNNLS.2013.2292893 |
5 |
XIA Y S, FENG G, WANG J. A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. IEEE Trans. on Neural Network, 2008, 19 (8): 1340- 1353.
doi: 10.1109/TNN.2008.2000273 |
6 | HAYAKAWA Y, NAKAJIMA K. Design of the inverse function delayed neural network for solving combinatorial optimization problems. IEEE Trans. on Neural Network, 2010, 21 (2): 224- 237. |
7 |
LIU Q S, YANG S F, WANG J. A collective neurodynamic approach to distributed constrained optimization. IEEE Trans. on Neural Network, 2017, 28 (8): 1747- 1758.
doi: 10.1109/TNNLS.2016.2549566 |
8 |
QIN S T, LI X Y, WANG J. A neurodynamic optimization approach to bilevel quadratic programming. IEEE Trans. on Neural Network, 2017, 28 (11): 2580- 2591.
doi: 10.1109/TNNLS.2016.2595489 |
9 | QIN S T, FENG J Q, SONG J H, et al. A one-layer recurrent neural network for constrained complex-variable convex optimization. IEEE Trans. on Neural Network, 2018, 29 (3): 534- 543. |
10 | ZHANG Y N, GONG H H, YANG M, et al. Stepsize range and optimal value for Taylor-Zhang discretization formula applied to zeroing neurodynamics illustrated via future equalityconstrained quadratic programming. IEEE Trans. on Neural Network, 2019, 30 (3): 959- 966. |
11 | LI J, ZHANG Y N, MAO M Z. General square-pattern discretization formulas via second-order derivative elimination for zeroing neural network illustrated by future optimization. IEEE Trans. on Neural Network, 2019, 30 (3): 891- 901. |
12 |
LI C J, YU X H, HUANG T W, et al. Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans. on Neural Network, 2018, 29 (6): 2407- 2418.
doi: 10.1109/TNNLS.2017.2691760 |
13 |
MA S Z, YANGY J, LIU H Q. A parameter free filled function for unconstrained global optimization. Applied Mathematics Computation, 2010, 215 (10): 3610- 3619.
doi: 10.1016/j.amc.2009.10.057 |
14 |
LIU X. A class of continuously differentiable filled functions for global optimization. IEEE Trans. on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008, 38 (1): 38- 44.
doi: 10.1109/TSMCA.2007.909554 |
15 | GAO C L, YANG Y J, HAN B S. A new class of filled functions with one parameter for global optimization. Computers&Mathematics with Applications, 2011, 62 (6): 2393- 2403. |
16 | WANG C J, YANG Y J, LI J. A new filled function method for unconstrained global optimization. Journal of Computational and Applied Mathematics, 2009, 225 (1): 68- 79. |
17 | LIANG Y M, ZHANG L S, LI M M, et al. A filled function method for global optimization. Journal of Computational and Applied Mathematics, 2007, 205 (1): 16- 31. |
18 | LIANG J J, QIN A K, BASKAR S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. on Evolutionary Computation, 2006, 10 (3): 281- 295. |
19 |
WANG Y P, DANG C Y. An evolutionary algorithm for global optimization based on level-set evolution and Latin squares. IEEE Trans. on Evolutionary Computation, 2007, 11 (5): 579- 595.
doi: 10.1109/TEVC.2006.886802 |
20 |
LU B Q, GAO G Q, LU Z Y. The block diagram method for designing the particle swarm optimization algorithm. Journal of Global Optimization, 2012, 52 (4): 689- 710.
doi: 10.1007/s10898-011-9699-9 |
21 |
ZHAN Z H, ZHANG J, LI Y, et al. Orthogonal learning particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2011, 15 (6): 832- 847.
doi: 10.1109/TEVC.2010.2052054 |
22 | SUN C L, JIN Y C, CHENG R, et al. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. on Evolutionary Computation, 2017, 21 (4): 644- 659. |
23 | MERCORELLI P. Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications. Journal of the Franklin Institute, 2007, 334 (6): 813- 829. |
24 |
YANG Q, CHEN W N, DENG J D, et al. A level-based learning swarm optimizer for large-scale optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (4): 578- 593.
doi: 10.1109/TEVC.2017.2743016 |
25 |
YANG M, OMIDVAR M N, LI C H, et al. Efficient resource allocation in cooperative co-evolution for large-scale global optimization. IEEE Trans. on Evolutionary Computation, 2017, 21 (4): 493- 503.
doi: 10.1109/TEVC.2016.2627581 |
26 |
LU X F, MENZEL S, TANG K, et al. Cooperative coevolution-based design optimization:a concurrent engineering perspective. IEEE Trans. on Evolutionary Computation, 2018, 22 (2): 173- 187.
doi: 10.1109/TEVC.2017.2713949 |
27 | BRANKE J, ASAFUDDOULA M, BHATTACHARJEE K S, et al. Efficient use of partially converged simulations in evolutionary optimization. IEEE Trans. on Evolutionary Computation, 2017, 21 (1): 52- 64. |
28 |
LI Z H, ZHANG Q F. A simple yet efficient evolution strategy for large-scale black-box optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (5): 637- 646.
doi: 10.1109/TEVC.2017.2765682 |
29 |
SUN Y, KIRLEY M, HALGAMUGE S K. A recursive decomposition method for large scale continuous optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (5): 647- 661.
doi: 10.1109/TEVC.2017.2778089 |
30 |
GU B, SHENG V S. A solution path algorithm for general parametric quadratic programming problem. IEEE Trans. on Neural Network, 2018, 29 (9): 4462- 4472.
doi: 10.1109/TNNLS.2017.2771456 |
31 |
CHATTERJEE O, CHAKRABARTTY S. Decentralized global optimization based on a growth transform dynamical system model. IEEE Trans. on Neural Network, 2018, 29 (12): 6052- 6061.
doi: 10.1109/TNNLS.2018.2817367 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||