1 |
HAIMOVICH A M, BLUM R S, CIMINI L J. MIMO radar with widely separated antennas. IEEE Signal Processing Mgazine, 2008, 25 (1): 116- 129.
doi: 10.1109/MSP.2008.4408448
|
2 |
ZHANG H W, XIE J W, GE J A, et al. Optimization model and online task interleaving scheduling algorithm for MIMO radar. Computers & Industrial Engineering, 2019, 127 (1): 865- 874.
|
3 |
HE Q, BLUM R S, HAIMOVICH A M. Noncoherent MIMO radar for location and velocity estimation: more antennas means better performance. IEEE Trans. on Signal Processing, 2010, 58 (7): 3661- 3680.
doi: 10.1109/TSP.2010.2044613
|
4 |
ZHANG H W, XIE J W, LU W L, et al. Novel ranking method for intuitionistic fuzzy values based on information fusion. Computers & Industrial Engineering, 2019, 133 (7): 139- 152.
|
5 |
GODRICH H, PETROPULU A P, POOR H V. Power allocation strategies for target localization in distributed multiple-radar architecture. IEEE Trans. on Signal Processing, 2011, 59 (7): 3226- 3240.
doi: 10.1109/TSP.2011.2144976
|
6 |
GODRICH H, HAIMOVICH A M, BLUM R S. Target localization accuracy gain in MIMO radar-based systems. IEEE Trans. on Information Theory, 2010, 56 (6): 2783- 2803.
doi: 10.1109/TIT.2010.2046246
|
7 |
GARCIA N, HAIMOVICH A M, COULON M, et al. Resource allocation in MIMO radar with multiple targets for non-coherent localization. IEEE Trans. on Signal Processing, 2014, 62 (10): 2656- 2666.
doi: 10.1109/TSP.2014.2315169
|
8 |
MA Y, CHEN S, XING C, et al. Decomposition optimization algorithms for distributed radar systems. IEEE Trans. on Signal Processing, 2016, 64 (24): 6443- 6458.
doi: 10.1109/TSP.2016.2602801
|
9 |
GODRICH H, PETROPULU A P, POOR H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation. IEEE Trans. on Signal Processing, 2012, 60 (1): 247- 260.
|
10 |
JAMALI-RAD H, SIMONETTO A, LEUS G. Sparsity-aware sensor selection: centralized and distributed algorithms. IEEE Signal Processing Letters, 2014, 21 (2): 217- 220.
|
11 |
HE Q, BLUM R S, GODRICH H, et al. Target velocity estimation and antenna placement for MIMO radar with widely separated antennas. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (1): 79- 100.
doi: 10.1109/JSTSP.2009.2038974
|
12 |
GODRICH H, CHIRIAC V, HAIMOVICH A. Target tracking in MIMO radar systems: techniques and performance analysis. Proc. of the IEEE Radar Conference, 2010: 1111-1116.
|
13 |
TICHAVSKY P, MURAVCHIK C, NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. on Signal Processing, 1998, 46 (5): 1386- 1396.
doi: 10.1109/78.668800
|
14 |
ZHANG H W, XIE J W, SHI J P, et al. Sensor scheduling and resource allocation in distributed MIMO radar for joint target tracking and detection. IEEE Access, 2019, 7 (1): 62387- 62400.
|
15 |
ZHANG H W, LIU W J, XIE J W, et al. Space-time allocation for transmit beams in collocated MIMO radar. Signal Processing, 2019, 164 (11): 151- 162.
|
16 |
SONG X Y, ZHENG N E, BAI T. Resource allocation schemes for multiple targets tracking in distributed MIMO radar systems. International Journal of Antennas and Propagation, 2017, 2017 (10): 1- 12.
|
17 |
CHAVALI P, NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking. IEEE Trans. on Signal Processing, 2012, 60 (2): 715- 729.
|
18 |
RADMARD M, CHITGARHA M M, NAZARI-MAJD M, et al. Antenna placement and power allocation optimization in MIMO detection. IEEE Trans. on Aerospace and Electronic System, 2014, 50 (2): 1468- 1478.
doi: 10.1109/TAES.2014.120776
|
19 |
HAYKIN S. Cognitive radar: a way of the future. IEEE Signal Processing Magazine, 2006, 23 (1): 30- 40.
|
20 |
ZHANG H W, XIE J W, SHI J P, et al. Joint beam and waveform selection for the MIMO radar target tracking. Signal Processing, 2019, 156 (3): 31- 40.
|
21 |
HULEIHEL W, TABRIKIAN J, SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar. IEEE Trans. on Signal Processing, 2013, 61 (20): 5075- 5089.
doi: 10.1109/TSP.2013.2269045
|
22 |
KELLERER H, PFERSCHY U, PISINGER D. Knapsack problems. Berlin: Springer, 2004.
|
23 |
KAPLAN L M. Global node selection for localization in a distributed sensor network. IEEE Trans. on Aerospace and Electronic System, 2006, 42 (1): 113- 135.
doi: 10.1109/TAES.2006.1603409
|
24 |
EBERHART R, KENNEDY J. A new optimizer using particle swarm theory. Proc. of the 6th International Symposium on Micro Machine and Human Science, 1995: 39-43.
|
25 |
ZHANG H W, XIE J W, GE J A, et al. A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. European Journal of Operational Research, 2019, 272 (3): 868- 878.
|
26 |
ZHANG H W, XIE J W, GE J, et al. An entropy-based PSO for DAR task scheduling problem. Applied Soft Computing, 2018, 73 (12): 862- 873.
|
27 |
TAN C, CHANG S Q, LIU L. Hierarchical genetic-particle swarm optimization for bistable permanent magnet actuators. Applied Soft Computing, 2017, 61 (12): 1- 7.
|
28 |
ARASARATNAM I, HAYKIN S, HURD T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans. on Signal Processing, 2010, 58 (10): 4977- 4993.
doi: 10.1109/TSP.2010.2056923
|
29 |
ZHANG H W, XIE J W, GE J A, et al. Adaptive strong tracking square-root cubature Kalman filter for maneuvering aircraft tracking. IEEE Access, 2018, 6, 10052- 10061.
doi: 10.1109/ACCESS.2018.2808170
|
30 |
SHI Y, EBERHART R. A modified particle swarm optimizer. Proc. of the IEEE International Conference on Evolutionary Computation, 1998: 69-73.
|
31 |
ZHANG H W, XIE J W, HU Q Y, et al. A hybrid DPSO with Levy flight for scheduling MIMO radar tasks. Applied Soft Computing, 2018, 71 (10): 242- 254.
|
32 |
SINGH M R, MAHAPATRA S S. A quantum behaved particle swarm optimization for flexible job shop scheduling. Computers & Industrial Engineering, 2016, 93 (3): 36- 44.
|
33 |
OTT E, GREBOGI C, YORKEJ A. Controlling chaos. Physical Review Letters, 1990, 64 (11): 1196- 1199.
doi: 10.1103/PhysRevLett.64.1196
|
34 |
XU X, RONG H, TROVATI M, et al. CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems. Soft Computing, 2018, 22 (3): 783- 795.
|
35 |
CAMPOS M, KROHLING R A. Entropy-based bare bones particle swarm for dynamic constrained optimization. Knowledge-Based Systems, 2016, 97 (4): 203- 223.
|