1 |
GE Z P, SUN X. Improved algorithm of radar pulse repetition interval de-interleaving based on pulse correlation. IEEE Access, 2019, 7, 30126- 30134.
doi: 10.1109/ACCESS.2019.2901013
|
2 |
MOSTAFA B, MOHAMMAD H S. A new approach to pulse de-interleaving based on adaptive thresholding. Turkish Journal of Electrical Engineering and Computer, 2017, 25 (5): 3827- 3838.
doi: 10.3906/elk-1606-415
|
3 |
MOSTAFA B, MOHAMMAD H S. A new method for detecting jittered PRI in histogram-based methods. Turkish Journal of Electrical Engineering and Computer, 2018, 26 (3): 1214- 1224.
|
4 |
LOGOTHETIS A, KRISHNAMURTHY V. An interval-amplitude algorithm for de-interleaving stochastic pulse train sources. IEEE Trans. on Signal Processing, 1998, 46 (5): 1344- 1350.
doi: 10.1109/78.668796
|
5 |
LIU Y C, ZHANG Q Y. Improved method for de-interleaving radar signals and estimating PRI values. IET Radar, Sonar and Navigation, 2018, 12 (5): 506- 514.
doi: 10.1049/iet-rsn.2017.0516
|
6 |
MAHMOUD K, DELARAM A, MANSOUR P A. A novel method of de-interleaving pulse repetition interval modulated sparse sequences in noisy environment. IEICE Trans. on Fundamentals of Electronics Communications and Computer Sciences, 2014, 97 (5): 1136- 1139.
doi: 10.1587/transfun.e97.a.1136
|
7 |
TORUN O, MEHMET B K, HAKAN A, et al. De-interleaving of radar signals with stagger PRI and dwell-switch PRI types. Proc. of the 25th Signal Processing and Communications Applications Conference, 2017: 89-97.
|
8 |
LIU Y C, ZHANG Q Y. Improved method for de-interleaving radar signals and estimating PRI values. IET Radar, Sonar and Navigation, 2018, 12 (5): 506- 514.
doi: 10.1049/iet-rsn.2017.0516
|
9 |
GUO N Q, ZHANG N X, LI N Z. SVC & K-means and type-entropy based de-interleaving/recognition system of radar pulses. Proc. of the IEEE International Conference on Information Acquisition, 2006: 742-747.
|
10 |
BRADLEY P, FAYYAD U. Refining initial points for K-means clustering. Proc. of the 15th International Conference on Machine Learning, 1998: 91-99.
|
11 |
GENCOL K. A two-stage de-interleaving technique for clustering of radar pulses. Proc. of the 25th Signal Processing and Communications Applications Conference, 2017: 331-341.
|
12 |
CARPENTER G A, GROSSBERG S, ROSEN D B. Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 1991, 4 (6): 759- 771.
doi: 10.1016/0893-6080(91)90056-B
|
13 |
SILVA L E B D, WUNSCH D C. Multi-prototype local density-based hierarchical clustering. Proc. of the International Joint Conference on Neural Networks, 2015: 1-9.
|
14 |
GRANGER E, SAVARIA Y, LAVOIE P, et al. A comparison of self-organizing neural networks for fast clustering of radar pulses. Signal Processing, 1998, 64 (3): 249- 269.
|
15 |
ATAA A W, ABDULLAH S N. De-interleaving of radar signals and prf identification algorithms. IET Radar, Sonar and Navigation, 2007, 1 (5): 340- 347.
doi: 10.1049/iet-rsn:20070037
|
16 |
GENCOL K, KARA A, AT N. Improvements on de-interleaving of radar pulses in dynamically varying signal environments. Digital Signal Processing, 2017, 69, 86- 93.
doi: 10.1016/j.dsp.2017.06.010
|
17 |
TSCHEREPANOW M, KORTKAMP M, KAMMER M. A hierarchical ART network for the stable incremental learning of topological structures and associations from noisy data. Neural Networks, 2011, 24 (8): 906- 916.
|
18 |
MATIAS A L S, NETO A R R. On ARTMAP: a fuzzy ARTMAP-based architecture. Neural Networks, 2018, 98, 236- 250.
doi: 10.1016/j.neunet.2017.11.012
|
19 |
KESKIN G A, ILHAN S, COŞKUN Ö. The fuzzy ART algorithm: a categorization method for supplier evaluation and selection. Expert System, 2010, 37 (2): 1235- 1240.
doi: 10.1016/j.eswa.2009.06.004
|
20 |
UNGLERT K, RADIC V, JELLINEK A M. Principal component analysis vs. Journal of Volcanology and Geothermal Research, 2016, 320 (15): 58- 74.
|
21 |
CHANG C Y, WANG H J, PAN S W. A robust DWT-based copyright verification scheme with fuzzy ART. Journal of Systems and Software, 2009, 82 (11): 1906- 1915.
doi: 10.1016/j.jss.2009.06.017
|
22 |
ISAWA H, MATSUSHITA H, NISHIO Y. Fuzzy adaptive resonance theory combining overlapped category in consideration of connections. Proc. of the International Joint Conference on Neural Networks, 2008: 3595-3600.
|
23 |
ISAWA H, TOMITA M, MATSUSHITA H, et al. Fuzzy adaptive resonance theory with group learning and its applications. Proc. of the International Symposium on Nonlinear Theory and its Applications, 2007: 292-295.
|
24 |
KIM K B, KIM S. A passport recognition and face verification using enhanced fuzzy ART based RBF network and PCA algorithm. Neurocomputing, 2008, 71 (16-18): 3202- 3210.
doi: 10.1016/j.neucom.2008.04.045
|
25 |
MARA L M L, MINUSSI C R, LOTUFO A D P. Electric load forecasting using a fuzzy ART & ARTMAP neural network. Applied Soft Computing, 2005, 5 (2): 235- 244.
doi: 10.1016/j.asoc.2004.07.003
|
26 |
POURPANAH F, LIM C P, SALEH J M. A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction. Expert Systems with Applications, 2016, 49 (C): 74- 85.
doi: 10.1016/j.eswa.2015.11.009
|
27 |
FURAO S, HASEGAWA O. An incremental network for on-line unsupervised classification and topology learning. Neural Networks, 2006, 19 (1): 90- 106.
doi: 10.1016/j.neunet.2005.04.006
|
28 |
MENDEL J M, JOHN R I B. Type-2 fuzzy sets made simple. IEEE Trans. on Fuzzy Systems, 2002, 10 (2): 117- 127.
doi: 10.1109/91.995115
|
29 |
CHOI B I, RHEE C H. Interval type-2 fuzzy membership function generation methods for pattern recognition. Information Sciences, 2009, 179 (13): 2102- 2122.
doi: 10.1016/j.ins.2008.04.009
|
30 |
KARNIK N N, MENDEL J M. Centroid of a type-2 fuzzy set. Information Sciences, 2001, 132 (1-4): 195- 220.
doi: 10.1016/S0020-0255(01)00069-X
|
31 |
MAJEED S, GUPTA A, RAJ D, et al. Uncertain fuzzy self-organization based clustering: an interval type-2 approach to adaptive resonance theory. Information Sciences, 2018, 424, 69- 90.
doi: 10.1016/j.ins.2017.09.062
|
32 |
LEONARDO E B D S, ISLAM E, DONALD C W. Dual vigilance fuzzy adaptive resonance theory. Neural Networks, 2019, 109, 1- 5.
doi: 10.1016/j.neunet.2018.09.015
|