1 |
SONG H, NAGATSUMA T Present and future of terahertz communications. IEEE Trans. on Terahertz Science and Technology, 2011, 1 (1): 256- 263.
doi: 10.1109/TTHZ.2011.2159552
|
2 |
GHOSH A, MAEDER A, BAKER M, et al 5G evolution: a view on 5G cellular technology beyond 3GPP release 15. IEEE Access, 2019, 7, 127639- 127651.
doi: 10.1109/ACCESS.2019.2939938
|
3 |
POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al 5G wireless network slicing for eMBB, URLLC, and mMTC: a communication-theoretic view. IEEE Access, 2018, 6, 55765- 55779.
doi: 10.1109/ACCESS.2018.2872781
|
4 |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al Obital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45 (11): 8185- 8189.
doi: 10.1103/PhysRevA.45.8185
|
5 |
TAMBURINI F, MARI E, SPONSELLI A, et al Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 2012, 14 (3): 033001.
doi: 10.1088/1367-2630/14/3/033001
|
6 |
MAHMOULI F E, WALKER S D 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel. IEEE Wireless Communications Letters, 2013, 2 (2): 223- 226.
doi: 10.1109/WCL.2013.012513.120686
|
7 |
YAN Y, XIE G, LAVERY M P J, et al High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications, 2014, 5, 4876.
doi: 10.1038/ncomms5876
|
8 |
ZHANG Z F, ZHENG S L, CHEN Y L, et al The capacity gain of orbital angular momentum based multiple-input-multiple-output system. Scientific Reports, 2016, 6, 25418.
doi: 10.1038/srep25418
|
9 |
REN Y X, LI L, XIE G D, et al Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing. IEEE Trans. on Wireless Communications, 2017, 16 (5): 3151- 3161.
doi: 10.1109/TWC.2017.2675885
|
10 |
ZHANG W T, ZHENG S L, HUI X N, et al Mode division multiplexing communication using microwave orbital angular momentum: an experimental study. IEEE Trans. on Wireless Communications, 2017, 16 (2): 1308- 1318.
doi: 10.1109/TWC.2016.2645199
|
11 |
CHEN R, YANG W H, XU H, et al A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas. IEEE Trans. on Vehicular Technology, 2018, 67 (6): 5481- 5485.
doi: 10.1109/TVT.2018.2817230
|
12 |
CHEN R, XU H, MORETTI M, et al Beam steering for the misalignment in UCA-based OAM communication systems. IEEE Wireless Communications Letters, 2018, 7 (4): 582- 585.
doi: 10.1109/LWC.2018.2797931
|
13 |
CHEN R, XU H, WANG X D, et al On the performance of OAM in keyhole channels. IEEE Wireless Communications Letters, 2019, 8 (1): 313- 316.
doi: 10.1109/LWC.2018.2871692
|
14 |
ZHANG C, ZHAO Y F Orbital angular momentum nondegenerate index mapping for long distance transmission. IEEE Trans. on Wireless Communications, 2019, 18 (11): 5027- 5036.
doi: 10.1109/TWC.2019.2927672
|
15 |
CHEN R, ZHOU H, MORETTI M, et al Orbital angular momentum waves: generation, detection and emerging applications. IEEE Communications Surveys Tutorials, 2020, 22 (2): 840- 868.
doi: 10.1109/COMST.2019.2952453
|
16 |
ZHAO Y F, ZHANG C Compound angular lens for radio orbital angular momentum coaxial separation and convergence. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (10): 2160- 2164.
doi: 10.1109/LAWP.2019.2939345
|
17 |
CHEN R, TIAN Z J, ZHOU H, et al OAM-based concentric spatial division multiplexing for cellular IoT terminals. IEEE Access, 2020, 8, 59659- 59669.
doi: 10.1109/ACCESS.2020.2983222
|
18 |
CHEN R, LONG W X, WANG X D, et al Multi-mode OAM radio waves: generation, angle of arrival estimation and reception with UCAs. IEEE Trans. on Wireless Communications, 2020, 19 (10): 6932- 6947.
doi: 10.1109/TWC.2020.3007026
|
19 |
CHEN R, ZOU M Q, WANG X D, et al, Generation and beam steering of arbitrary-order OAM with time-modulated circular arrays. IEEE Systems Journal, 2020. DOI: 10.1109.JSYST.2020.3019337.
|
20 |
EDFORS O, JOHANSSON A J Is orbital angular momentum (OAM) based radio communication an unexploited area?. IEEE Trans. on Antennas and Propagation, 2012, 60 (2): 1126- 1131.
doi: 10.1109/TAP.2011.2173142
|
21 |
ZHANG Z Q, XIAO Y, MA Z, et al 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 2019, 14 (3): 28- 41.
doi: 10.1109/MVT.2019.2921208
|
22 |
YANG P, XIAO Y, XIAO M, et al 6G wireless communications: vision and potential techniques. IEEE Network, 2019, 33 (4): 70- 75.
doi: 10.1109/MNET.2019.1800418
|
23 |
ZHANG Y J, FENG W, GE N. On the restriction of utilizing orbital angular momentum in radio communications. Proc. of the 8th International Conference on Communications and Networking in China, 2013: 271–275.
|
24 |
XIE G D, LI L, REN Y X, et al Performance metrics and design considerations for a free-space optical orbital-angular- momentum-multiplexed communication link. Optica, 2015, 2 (4): 357- 365.
doi: 10.1364/OPTICA.2.000357
|
25 |
ZAIDI A A, BALDEMAIR R, MOLES-CASES V, et al OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN. IEEE Communications Standards Magazine, 2018, 2 (2): 78- 83.
doi: 10.1109/MCOMSTD.2018.1700021
|
26 |
MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al Orbital angular momentum in radio—a system study. IEEE Trans. on Antennas and Propagation, 2010, 58 (2): 565- 572.
doi: 10.1109/TAP.2009.2037701
|
27 |
MARZETTA T L Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. on Wireless Communications, 2010, 9 (11): 3590- 3600.
doi: 10.1109/TWC.2010.092810.091092
|
28 |
CHEN R, XU X, LI J, et al. Misalignment-robust receiving scheme for UCA-based OAM communication systems. Proc. of the IEEE 85th Vehicular Technology Conference, 2017: 1−5.
|