1 |
TALISA S H, O’HAVER K W, COMBERIATE T M, et al Benefits of digital phased array radars. Proceedings of the IEEE, 2016, 104 (3): 530- 543.
doi: 10.1109/JPROC.2016.2515842
|
2 |
ECKHARDT J M, NIKO J, ADRIAN F, et al FMCW multiple-input multiple-output radar with iterative adaptive beamforming. IET Radar, Sonar & Navigation, 2018, 12 (11): 1187- 1195.
|
3 |
HU B, WU X C, ZHANG X, et al Adaptive beamforming based on compressed sensing with gain/phase uncertainties. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2018, 101 (8): 1257- 1262.
|
4 |
ASHWINI D, ZALAWADIA K Performance analysis of LMS adaptive beamforming algorithm for smart antenna system. International Journal of Computer Applications, 2018, 179 (28): 34- 37.
doi: 10.5120/ijca2018916633
|
5 |
SHI W L, LI Y S, YIN J W Improved constraint NLMS algorithm for sparse adaptive array beamforming control applications. Applied Computational Electromagnetics Society Journal, 2019, 34 (3): 419- 424.
|
6 |
WANG Z G, ZHU C, DIAO Z L, et al Summarization of anti-mainlobe-jamming technology of phased-array radar. Shipboard Electronic Countermeasure, 2019, 12 (6): 13- 18.
|
7 |
SHI L F, REN B, MA J Z Recent developments of radar anti-interference techniques with polarimetry. Modern Radar, 2016, 38 (4): 1- 7.
|
8 |
ZONG Z W, SHI L F, WANG X S A commonality used to discriminate active repetition false targets based on polarization characteristics of antenna. IET Radar, Sonar and Navigation, 2016, 10 (7): 1178- 1185.
doi: 10.1049/iet-rsn.2015.0421
|
9 |
SHI L F, WANG X S, XU Z H, et al A fast robust LMS adaptive beamforming algirithm. Journal of Electronics & Information Technology, 2006, 28 (9): 1560- 1564.
|
10 |
CHEN T Z Adaptive dual-polarization canceller algorithm for counter mining radar jamming. Modern Defence Technology, 2018, 46 (4): 67- 72.
|
11 |
YANG Z, BAI W X, FU X L Cancellation method analysis of full polarized auxiliary antenna to polarized interference. Modern Defence Technology, 2016, 44 (5): 131- 136.
|
12 |
REN B, SHI L F, WANG H G, et al Investigation on polarization filtering scheme to suppress GSM interference in radar main beam. Journal of Electronics & Information Technology, 2014, 36 (2): 459- 464.
|
13 |
TANG Y Z, ZHAO G Z Adaptive beamforming technique based on a modified particles warm optimization. Ship Science and Technology, 2018, 40 (9): 111- 115.
|
14 |
BAI M Y, LIU H, CHEN H C, et al Adaptive beamforming algorithm based on deep neural network. Journal of Telemetry, Tracking and Command, 2019, 40 (6): 28- 35.
|
15 |
PHILIP C, JIM R, HUBERT D B Estimating neural sources using a worst-case robust adaptive beamforming approach. Biomedical Signal Processing and Control, 2019, 52, 330- 340.
doi: 10.1016/j.bspc.2019.04.021
|
16 |
LIU S T, JIANG H L, LIU L B, et al Gradient descent using stochastic circuits for efficient training of learning machines. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37 (11): 2530- 2541.
doi: 10.1109/TCAD.2018.2858363
|
17 |
MING Y W, ZHAO Y W, WU C K, et al Distributed and asynchronous stochastic gradient descent with variance reduction. Neurocomputing, 2018, 281, 27- 36.
doi: 10.1016/j.neucom.2017.11.044
|
18 |
PENG F, WU J, WANG S, et al Adaptive beamforming algorithm for airborne early warning radar based on SVRGD. Systems Engineering and Electronics, 2021, 43 (1): 83- 90.
|
19 |
SHI W L, LI Y S, SUN L J, et al Norm constrained noise-free algorithm for sparse adaptive array beamforming. Applied Computational Electromagnetics Society Journal, 2019, 34 (5): 709- 715.
|
20 |
YAO Z, SAXE A M, ADVANI M S, et al Energy-entropy competition and the effectiveness of stochastic gradient descent in machine learning. Molecular Physics, 2018, 116 (21): 3214- 3223.
|
21 |
BOTTARELLI L, LOOG M Gaussian process variance reduction by location selection. Pattern Recognition Letters, 2019, 125 (7): 727- 734.
|
22 |
CHEN X Z, SHU T, YU K B, et al Enhanced ADBF architecture for monopulse angle estimation in multiple jammings. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2684- 2687.
doi: 10.1109/LAWP.2017.2740958
|
23 |
KHAN Z A, CHAUDHARY N I, ZUBAIR S Fractional stochastic gradient descent for recommender systems. Electronic Markets, 2019, 29 (2): 275- 285.
doi: 10.1007/s12525-018-0297-2
|
24 |
YANG Z, WANG C, ZHANG Z M, et al Random Barzilai-Borwein step size for mini-batch algorithms. Engineering Applications of Artificial Intelligence, 2018, 72 (6): 124- 135.
|
25 |
MIN E X, LONG J, CUI J J Analysis of the variance reduction in SVRG and a new acceleration method. IEEE Access, 2018, 4, 16165- 16175.
|
26 |
CHEN L, ZHOU S S, ZHANG Z SVRG for a non-convex problem using graduated optimization algorithm. Journal of Intelligent & Fuzzy Systems, 2018, 34 (1): 153- 165.
|
27 |
RAMAZANLI I, NGUYEN H, PHAM H, et al. Adaptive sampling distributed stochastic variance reduced gradient for heterogeneous distributed datasets. arXiv preprint arXiv: 2002.08528, 2020.
|
28 |
YU K B. Mainlobe cancellation, orthgonal nulling and product patterns. Proc. of the IEEE International Symposium on Phased Array Systems and Technology, 2017. DOI: 10.1109/ARRAY.2016.7832637.
|
29 |
YANG Z, WANG C, ZHANG Z M, et al Accelerated stochastic gradient descent with step size selection rules. Signal Processing, 2019, 159 (6): 171- 186.
|
30 |
LUO Z J, QIAN Y T Stochastic sub-sampled Newton method with variance reduction. International Journal of Wavelets Multiresolution and Information Processing, 2019, 17 (116): 62- 68.
|