1 |
MA J Z, SHI L F, XU Z H, et al Overview of multi-source parameter estimation and jamming mitigation for monopulse radars. Journal of Radars, 2019, 8 (1): 125- 139.
|
2 |
BLAIR W D, BRANDT-PEARCE M Unresolved Rayleigh detection using monopulse measurements. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34 (2): 543- 552.
doi: 10.1109/7.670335
|
3 |
LI C W, WANG H Q, LI X, et al Study on the detection of the multiple unresolved targets. Journal of Systems Engineering and Electronics, 2005, 16 (2): 295- 300.
|
4 |
YANG Y, FENG D J, ZHANG W M, et al Detection of chaff centroid jamming aided by GPS/INS. IET Radar, Sonar & Navigation, 2013, 7 (2): 130- 142.
|
5 |
GLASS J D, BLAIR W D. Detection of unresolved Rayleigh targets using adjacent bins. Proc. of the IEEE Aerospace Conference, 2016. DOI: 10.1109/AERO.2016.7500875.
|
6 |
TSAI T Y, LIAO Z Q, DING Z Q, et al Detection of unresolved targets for wideband monopulse radar. Sensors, 2019, 19 (5): 1084.
doi: 10.3390/s19051084
|
7 |
ZHANG X, WILLETT P K, BAR-SHALOM Y Monopulse Radar detection and localization of multiple unresolved targets via joint bin Processing. IEEE Trans. on Signal Processing, 2005, 53 (4): 1225- 1236.
doi: 10.1109/TSP.2005.843732
|
8 |
ZHANG X, WILLETT P, BAR-SHALOM Y Detection and localization of multiple unresolved extended targets via monopulse radar signal processing. IEEE Trans. on Aerospace and Electronic Systems, 2005, 45 (2): 455- 472.
|
9 |
YANG Y, LI Y Y. A maximum likelihood extractor for forward-looking imaging of multiple unresolved targets in monopulse radar. Proc. of the CIE International Conference on Radar, 2016. DOI: 10.1109/RADAR.2016.8059347.
|
10 |
YUAN H, WANG C Y, AN L, et al Monopulse joint parameter estimation of multiple unresolved targets within the radar beam. Proc. of the IOP Conference Series Earth and Environmental Science, 2017, 69 (1): 012155.
|
11 |
WANG J, YAO J, QIAO X L. A practical approach of monopulse DOA estimation for multiple unresolved targets. Proc. of the IET International Radar Conference, 2009. DOI: 10.1049/cp.2009.0427.
|
12 |
MA Y G, ZENG Y H, SUN S M A deep learning based super resolution DoA estimator with single snapshot MIMO radar data. IEEE Trans. on Vehicular Technology, 2022, 71 (4): 4142- 4155.
doi: 10.1109/TVT.2022.3151674
|
13 |
LIANG C, LIU A, YANG Q. DOA estimation using an extended spatial smoothing with coprime MIMO radar. Proc. of the IET International Radar Conference, 2021. DOI: 10.1049/icp.2021.0638.
|
14 |
DONG F B, JIANG Y, LIU J, et al Experimental study on the performance of DOA estimation algorithm using a coprime acoustic sensor array without a priori knowledge of the source number. Applied Acoustics, 2022, 186, 108502.
doi: 10.1016/j.apacoust.2021.108502
|
15 |
CAO C H, ZHAO Y B, PANG X J, et al A method based on Chinese remainder theorem with all phase DFT for DOA estimation in sparse array. Journal of Systems Engineering and Electronics, 2020, 31 (1): 1- 11.
|
16 |
SAKAMOTO T Generating a super-resolution radar angular spectrum using physiological component analysis. IEICE Communications Express, 2021, 10 (10): 780- 785.
doi: 10.1587/comex.2021XBL0137
|
17 |
CHEN F, GUI C Y, MO S Q Eigenvalue-based super-resolution DOA algorithm for arbitrary arrays. Applied Acoustics, 2021, 181, 108106.
doi: 10.1016/j.apacoust.2021.108106
|
18 |
ZHANG Q P, ZHANG Y, ZHANG Y C, et al A sparse denoising-based super-resolution method for scanning radar imaging. Remote Sensing, 2021, 13 (14): 2768.
doi: 10.3390/rs13142768
|
19 |
TAN K, LU X Y, YANG J C, et al A novel Bayesian super-resolution method for radar forward-looking imaging based on Markov random field model. Remote Sensing, 2021, 13 (20): 4115.
doi: 10.3390/rs13204115
|
20 |
HUO W B, ZHANG Q P, ZHANG Y, et al A superfast super-resolution method for radar forward-looking imaging. Sensors, 2021, 21 (3): 817.
doi: 10.3390/s21030817
|
21 |
ZHANG Q P, ZHANG Y, ZHANG Y C, et al Airborne radar super-resolution imaging based on fast total variation method. Remote Sensing, 2021, 13 (4): 549.
doi: 10.3390/rs13040549
|
22 |
WANG Y L, WANG Y Z, GUO Z Y OAM radar based fast super-resolution imaging. Measurement, 2022, 189, 110600.
doi: 10.1016/j.measurement.2021.110600
|
23 |
YANG T, SHI H Y, GUO J W, et al Orbital angular momentum based super resolution ISAR imaging for maneuvering targets: modeling and performance analysis. Digital Signal Processing, 2021, 117, 103197.
doi: 10.1016/j.dsp.2021.103197
|
24 |
DU L, LIU H W, BAO Z. Using the amplitude fluctuation property of target HRRP for radar automatic target recognition. Proc. of the International Conference on Radar, 2006. DOI: 10.1109/ICR.2006.343563.
|
25 |
DU L, LIU H W, BAO Z, et al A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Trans. on Signal Processing, 2006, 54 (6): 2226- 2238.
doi: 10.1109/TSP.2006.873534
|
26 |
HAMNER C A, MAIER M W Methods to reduce range glint in radars. Proc. of the IEEE Aerospace Conference, 1997, 3, 83- 102.
|
27 |
ZHAO F, BI L, MIN T, et al A new method for detecting the presence of multiple unresolved targets. Acta Electonica Sinica, 2010, 38 (10): 2258.
|
28 |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning. https://arxiv.org/abs/1509.02971.
|
29 |
SCHRO D Expectation maximization algorithm. Journal of Digital Imaging, 2011, 22 (5): 483- 491.
|
30 |
KAY S M. Fundamentals of statistical signal processing: estimation theory. Upper Saddle River: Prentice Hall, 1993.
|
31 |
MOSCA E Angle estimation in amplitude comparison monopulse systems. IEEE Trans. on Aerospace and Electronic Systems, 1969, (2): 205- 212.
|