1 |
ANJANKAR S C, KOLTE DR M T, PUND A, et al. FPGA based multiple fault tolerant and recoverable technique using triple modular redundancy (FRTMR). Procedia Computer Science, 2016, 79, 827- 834.
|
2 |
YAO R, CHEN Q, LI Z W, et al. Multi-objective evolutionary design of selective triple modular redundancy systems against SEUs. Chinese Journal of Aeronautics, 2015, 28 (3): 804- 813.
|
3 |
CHEN Y K, FENG Z G, ZHANG S, et al. Research on reconfigurable triple-module redundancy space on-board computer. Computer Measurement & Control, 2017, 25 (2): 201- 203.
|
4 |
SIOZIOS K, SAVIDIS I, SOUDRIS D. A framework for exploring alternative fault-tolerant schemes targeting 3-D reconfigurable architectures. Proc. of the International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, 2016: 336-341.
|
5 |
HE R X, CHEN N J. Fault tolerance of reconfigurable computing system. Journal of Mianyang Teachers'College, 2017, 36 (5): 90- 97.
|
6 |
BANERJEE S, RAO W. A local reconfiguration based scalable fault tolerant many-processor array. Proc. of the 22nd Asia and South Pacific Design Automation Conference, 2017: 432-437.
|
7 |
HAN J, LEUNG E, LIU L B, et al. A fault-tolerant technique using quadded logic and quadded transistors. IEEE Trans. on Very Large Scale Integration Systems, 2015, 23(8): 1562-1566.
|
8 |
ROHANIPOOR M R, GHAVAMI B, RAJI M. Design of fault tolerant digital integrated circuits based on quadded transistor logic. Proc. of the 8th International Conference on Information and Knowledge Technology, 2016: 188-192.
|
9 |
ZHANG J B, CAI J Y, MENG Y F. A design technology of fault tolerance circuit system facing complex electromagnetic environments. Journal of Xi'an Jiaotong University, 2017, 51 (2): 53- 59.
|
10 |
SOLOVIEV A, STEMPKOVSKY A, KALEEV D, et al. Methods of increasing the fault-tolerance of control unit by introducing hardware redundancy. Proc. of the IEEE Internet Technologies and Applications, 2015: 37-40.
|
11 |
SHOKER A. Exploiting universal redundancy. Proc. of the 15th IEEE International Symposium on Network Computing and Applications, 2016: 199-203.
|
12 |
KIM J, LEE W, CHO K, et al. Hardware-efficient built-in redundancy analysis for memory with various spares. IEEE Trans. on Very Large Scale Integration Systems, 2017, 25(3): 844-856.
|
13 |
SHEIKH A T, EL-MALEH A H, ELRABAA M E S, et al. A fault tolerance technique for combinational circuits based on selective-transistor redundancy. IEEE Trans. on Very Large Scale Integration Systems, 2017, 25(1): 224-237.
|
14 |
SUN Q, NIE L, SUN L, et al. Hybrid redundancy fault tolerant codec in distributed storage system. Proc. of the International Conference on Industrial Informatics, 2015: 22-25.
|
15 |
QI Y, GAO J B, FORTES A B. Markov chains and probabilistic computation-a general framework for multiplexed nanoelectronic systems. IEEE Trans. on Nanotechnology, 2005, 4(2): 194-205.
|
16 |
VON NEUMANN J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Princeton: Princeton University Press, 1956.
|
17 |
PIPPENGER N. Invariance of complexity measures for networks with unreliable gates. Journal of the ACM, 1989, 36 (3): 531- 539.
|
18 |
QI Y, GAO J B. Bifurcations and fundamental error bounds for fault tolerant computations. IEEE Trans. on Nanotechnology, 2005, 4(4): 395-402.
|
19 |
HAN J, JONKER P. A system architecture solution for unreliable nanoelectronic devices. IEEE Trans. on Nanotechnology, 2002, 1(4): 201-208.
|
20 |
VOICU G R, COTOFANA S D. Towards heterogenous 3Dstacked reliable computing with von Neumann multiplexing. Proc. of the IEEE/ACM International Symposium on Nanoscale Architectures, 2013: 122-127.
|
21 |
GUCWA K. On simulation of multiplexed architecture for fault-tolerant nanoelectronic systems. Proc. of the 12th IEEE Conference on Nanotechnology, 2012: 1-4.
|
22 |
BEIU V, IBRAHIM W. Devices and input vectors are shaping von Neumann multiplexing. IEEE Trans. on Nanotechnology, 2011, 10(3): 606-616.
|
23 |
LEE J S, JEON J C. Design of low hardware complexity multiplexer using NAND gates on quantum-dot cellular automata. International Journal of Multimedia and Ubiquitous Engineering, 2016, 11 (12): 307- 318.
|
24 |
ROY S, BEIU V. Majority multiplexing-economical redundant fault-tolerant designs for nanoarchitectures. IEEE Trans. on Nanotechnology, 2005, 4(4): 441-451.
|
25 |
BHADURI D, SHUKLA S K. Reliability evaluation of von Neumann multiplexing based defect-tolerant majority circuits. Proc. of the 4th IEEE Conference on Nanotechnology, 2004: 599-601.
|
26 |
BHADURI D, SHUKLA S K, GRAHAM P, et al. Comparing reliability-redundancy tradeoffs for two von Neumann multiplexing architectures. IEEE Trans. on Nanotechnology, 2007, 6(3): 265-279.
|
27 |
IBRAHIM W, BEIU V, BEG A. On NOR-2 von Neumann multiplexing. Proc. of the 5th International Design and Test Workshop, 2010: 67-72.
|
28 |
PIERCE W H. Interwoven redundant logic. Journal of the Franklin Institute, 1964, 277 (1): 55- 85.
doi: 10.1016/0016-0032(64)90039-0
|
29 |
DIAO M, YU L H, CHEN X B. A fault tolerant technique for naocomputers: XOR multiplexing. ICIC Express Letters, 2017, 11 (7): 1167- 1174.
|
30 |
MAHMOOD M, HAMMAD S, MAHMOOD I. An efficient algorithm for computing the roots of general quadratic, cubic and quartic equations. International Journal of Mathematical Education in Science and Technology, 2014, 45 (7): 1612- 1620.
|