1 |
ANDREWS J G, BUZZI S, WAN C, et al. What will 5G be?. IEEE Journal on Selected Areas in Communications, 2014, 32 (6): 1065- 1082.
doi: 10.1109/JSAC.2014.2328098
|
2 |
LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 2014, 8 (5): 742- 758.
doi: 10.1109/JSTSP.2014.2317671
|
3 |
WANG C X, HAIDER F, GAO X, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 2014, 52 (2): 122- 130.
doi: 10.1109/MCOM.2014.6736752
|
4 |
EMIL B, LARSSON E G, MARZETTA T L. Massive MIMO: ten myths and one critical question. IEEE Communications Magazine, 2015, 54 (2): 114- 123.
|
5 |
LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52 (2): 186- 195.
doi: 10.1109/MCOM.2014.6736761
|
6 |
HOYDIS J, TEN BRINK S, DEBBAH M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?. IEEE Journal on Selected Areas in Communications, 2013, 31 (2): 160- 171.
doi: 10.1109/JSAC.2013.130205
|
7 |
CHAN P W C, LO E S, WANG R R, et al. The evolution path of 4G networks: FDD or TDD?. IEEE Communications Magazine, 2007, 44 (12): 42- 50.
|
8 |
NAM Y H, AKIMOTO Y, KIM Y, et al. Evolution of reference signals for LTE advanced systems. IEEE Communications Magazine, 2012, 50 (2): 132- 138.
doi: 10.1109/MCOM.2012.6146492
|
9 |
BERGER C R, WANG Z, HUANG J, et al. Application of compressive sensing to sparse channel estimation. IEEE Communications Magazine, 2010, 48 (11): 164- 174.
doi: 10.1109/MCOM.2010.5621984
|
10 |
DAI L, WANG J, WANG Z, et al. Spectrum and energyefficient OFDM based on simultaneous multichannel reconstruction. IEEE Trans. on Signal Processing, 2013, 61 (23): 6047- 6059.
doi: 10.1109/TSP.2013.2282920
|
11 |
BARBOTIN Y, HORMATI A, RANGAN S, et al. Estimation of sparse MIMO channels with common support. IEEE Trans. on Communications, 2011, 60 (12): 3705- 3716.
|
12 |
DONOHO D L. Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
13 |
DONOHO D L, ELAD M, TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. on Information Theory, 2005, 52 (1): 6- 18.
|
14 |
BARON D, WAKIN M B, DUARTE M F, et al. Distributed compressed sensing. Preprint, 2012, 22 (10): 2729- 2732.
|
15 |
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108
|
16 |
DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. on Information Theory, 2008, 55 (5): 2230- 2249.
|
17 |
TROPP J A, GILBERT A C, STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, 2006, 86 (3): 572- 588.
|
18 |
GAO X, EDFORS O, RUSEK F, et al. Linear precoding performance in measured very large MIMO channels. Proceeding of IEEE Vehicular Technology Conference, 2011, 1- 5.
|
19 |
RAO X, LAU V K N. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. on Signal Processing, 2014, 62 (12): 3261- 3271.
doi: 10.1109/TSP.2014.2324991
|
20 |
CHOI J, LOVE D J, BIDIGARE P. Downlink training techniques for FDD massive MIMO systems: open-Loop and closed-Loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 2013, 8 (5): 802- 814.
|
21 |
SHEN J C, ZHANG J, ALSUSA E, et al. Compressed CSI acquisition in FDD massive MIMO: how much training is needed? IEEE Trans. on Wireless Communications, 2016, 15 (6): 4145- 4156.
|
22 |
MASOOD M, AFIFY L H, AL-NAFFOURI T Y. Efficient coordinated recovery of sparse channels in massive MIMO. IEEE Trans. on Signal Processing, 2014, 63 (1): 104- 118.
|
23 |
BEN-HAIM Z, ELDAR Y C. Near-oracle performance of greedy block-sparse estimation techniques from noisy measurements. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (5): 1032- 1047.
doi: 10.1109/JSTSP.2011.2160250
|
24 |
HOU W, LIM C W. Structured compressive channel estimation for large-scale MISO-OFDM systems. IEEE Communications Letters, 2014, 18 (5): 765- 768.
doi: 10.1109/LCOMM.2014.030714.132630
|
25 |
ZELNIK-MANOR L, ROSENBLUM K, ELDAR Y C. Sensing matrix optimization for block-sparse decoding. IEEE Trans. on Signal Processing, 2011, 59 (9): 4300- 4312.
doi: 10.1109/TSP.2011.2159211
|
26 |
QI C, HUANG Y, JIN S, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems. IEEE International Conference on Communications, 2015, 4558- 4563.
|
27 |
CHOI J W, SHIM B, CHANG S. Downlink pilot reduction for massive MIMO systems via compressed sensing. IEEE Communications Letters, 2015, 19 (11): 1889- 1892.
doi: 10.1109/LCOMM.2015.2474398
|
28 |
ZHANG W, XIA X G, CHING P C. Optimal training and pilot pattern design for OFDM systems in Rayleigh fading. IEEE Trans. on Broadcasting, 2006, 52 (4): 505- 514.
doi: 10.1109/TBC.2006.884001
|
29 |
XIA P, ZHOU S, GIANNAKIS G B. Achieving the Welch bound with difference sets. IEEE Trans. on Information Theory, 2005, 51 (5): 1900- 1907.
doi: 10.1109/TIT.2005.846411
|
30 |
CHEN J C, WEN C K, TING P. An efficient pilot design scheme for sparse channel estimation in OFDM systems. IEEE Communications Letters, 2013, 17 (7): 1352- 1355.
doi: 10.1109/LCOMM.2013.051313.122933
|
31 |
HE X, SONG R, ZHU W P. Pilot Allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO OFDM Systems. IEEE Trans. on Vehicular Technology, 2016, 65 (5): 2990- 3004.
doi: 10.1109/TVT.2015.2441743
|
32 |
GAO Z, DAI L, DAI W, et al. Structured compressive sensing based spatio temporal joint channel estimation for FDD massive MIMO. IEEE Trans. on Communication, 2016, 64 (2): 601- 617.
doi: 10.1109/TCOMM.2015.2508809
|
33 |
LEE D. MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Communications Letters, 2016, 20 (10): 2115- 2118.
doi: 10.1109/LCOMM.2016.2594059
|
34 |
KAY S M. Fundamentals of statistical signal processing, volumn I: estimation theory. New Jersey, USA: Prentice-Hall, 1993.
|
35 |
BEN-HAIM Z, ELDAR Y C. The Cramér-Rao bound for estimating a sparse parameter vector. IEEE Trans. on Signal Processing, 2010, 58 (6): 3384- 3389.
doi: 10.1109/TSP.2010.2045423
|
36 |
DEB K. Multi-objective optimisation using evolutionary algorithms: an introduction. New York: Wiley, 2001.
|
37 |
RUDOLPH G. Convergence analysis of canonical genetic algorithms. IEEE Trans. on Neural Networks, 1994, 5 (1): 95- 101.
|