Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (1): 167-179.doi: 10.21629/JSEE.2019.01.16
收稿日期:2017-08-18
									
				
									
				
									
				
											出版日期:2019-02-27
									
				
											发布日期:2019-02-27
									
			
        
               		Ligang GONG1( ), Qing WANG1,*(
), Qing WANG1,*( ), Chaoyang DONG2(
), Chaoyang DONG2( )
)
			  
			
			
			
                
        
    
Received:2017-08-18
									
				
									
				
									
				
											Online:2019-02-27
									
				
											Published:2019-02-27
									
			Contact:
					Qing WANG   
											E-mail:jackstrawberry@126.com;bhwangqing@126.com;bhdongchaoyang@126.com
												About author:GONG Ligang was born in 1992. He received his B.S. degree in automatic control from Beihang University, Beijing, China, in 2013. He is currently a Ph.D. candidate in School of Automation Science and Electrical Engineering, Beihang University. His research interests include nonlinear systems, aircraft guidance and control and intelligence control. E-mail:Supported by:. [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 167-179.
Ligang GONG, Qing WANG, Chaoyang DONG. Switching disturbance rejection attitude control of near space vehicles with variable structure[J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 167-179.
| 1 | CHAI R,   SAVVARIS A,   TSOURDOS A,  et al.  Multi-objective trajectory optimization of space manoeuvre vehicle using adaptive differential evolution and modified game theory. Acta Astronautica, 2017, 136, 273- 280. doi: 10.1016/j.actaastro.2017.02.023 | 
| 2 | SZIROCZAK D,   SMITH H.   A review of design issues specific to hypersonic flight vehicles. Progress in Aerospace Sciences, 2016, 84, 1- 28. doi: 10.1016/j.paerosci.2016.04.001 | 
| 3 | QUADRELLI M B,   WOOD L J,   RIEDEL J E,  et al.  Guidance, navigation, and control technology assessment for future planetary science missions. Journal of Guidance, Control, and Dynamics, 2015, 38 (7): 1165- 1186. doi: 10.2514/1.G000525 | 
| 4 | VIVIANI A,   IUSPA L,   APROVITOLA A.   An optimizationbased procedure for self-generation of re-entry vehicles shape. Aerospace Science and Technology, 2017, 68, 123- 134. doi: 10.1016/j.ast.2017.05.009 | 
| 5 | ALBISSER M,   DOBRE S,   BERNER C,  et al.  Aerodynamic coefficient identification of a space vehicle from multiple freeflight tests. Journal of Spacecraft and Rockets, 2017, 54 (2): 426- 435. doi: 10.2514/1.A33587 | 
| 6 | REN Z, FU W, YAN J, et al. Discrete reconfigurable backstepping attitude control of reentry hypersonic flight vehicle. Advances in Mechanical Engineering, 2017, 9 (4): 1- 13. | 
| 7 | ZHANG J,   SUN C,   ZHANG R,  et al.  Adaptive sliding mode control for re-entry attitude of near space hypersonic vehicle based on backstepping design. IEEE/CAA Journal of Automatica Sinica, 2015, 2 (1): 94- 101. doi: 10.1109/JAS.2015.7032910 | 
| 8 | YAN X, CHEN M, WU Q, et al. Adaptive neural tracking control for near-space vehicles with stochastic disturbances. International Journal of Advanced Robotic Systems, 2017, 14 (3): 1- 9. | 
| 9 | SHAO X,   WANG H.   Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties. ISA Transactions, 2015, 54, 27- 38. doi: 10.1016/j.isatra.2014.06.010 | 
| 10 | ZHANG J,   SUN T.   Disturbance observer-based sliding manifold predictive control for reentry hypersonic vehicles with multi-constraint. Proc. of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230 (3): 485- 495. doi: 10.1177/0954410015593564 | 
| 11 | CHANG Y,   JIANG T,   PU Z.   Adaptive control of hypersonic vehicles based on characteristic models with fuzzy neural network estimators. Aerospace Science and Technology, 2017, 68, 475- 485. doi: 10.1016/j.ast.2017.05.043 | 
| 12 | ROSSMAN G,   LE VINE M J,   LAWLOR S,  et al.  Conceptual design of a small earth reentry vehicle for biological sample return. Journal of Spacecraft and Rockets, 2017, 54 (1): 246- 257. doi: 10.2514/1.A33568 | 
| 13 | AJAJ R M,   BEAVERSTOCK C S,   FRISWELL M I.   Morphing aircraft:the need for a new design philosophy. Aerospace Science and Technology, 2016, 49, 154- 166. doi: 10.1016/j.ast.2015.11.039 | 
| 14 | JUNGERS R M, AHMADI A A, PARRILO P A, et al. A characterization of Lyapunov inequalities for stability of switched systems. IEEE Trans. on Automatic Control, 2017, 62 (6): 3062- 3067. | 
| 15 | ZHANG D,   SHI P,   WANG Q G.   Energy-efficient distributed control of large-scale systems:a switched system approach. International Journal of Robust and Nonlinear Control, 2016, 26 (14): 3101- 3117. doi: 10.1002/rnc.3494 | 
| 16 | LIN X,   CHEN C C,   QIAN C.   Smooth output feedback stabilization of a class of planar switched nonlinear systems under arbitrary switchings. Automatica, 2017, 82, 314- 318. doi: 10.1016/j.automatica.2017.03.020 | 
| 17 | LIU Z,   CHEN B,   LIN C.   Adaptive neural backstepping for a class of switched nonlinear system without strict-feedback form. IEEE Trans. on Systems, Man, and Cybernetics:Systems, 2017, 47 (7): 1315- 1320. doi: 10.1109/TSMC.2016.2585664 | 
| 18 | LI Y,   TONG S,   LIU L,  et al.  Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica, 2017, 80, 225- 231. doi: 10.1016/j.automatica.2017.02.005 | 
| 19 | ZHAO X, YIN Y, ZHANG L, et al. Control of switched nonlinear systems via T-S fuzzy modeling. IEEE Trans. on Fuzzy Systems, 2016, 24 (1): 235- 241. | 
| 20 | HUANG Y,   SUN C,   QIAN C,  et al.  Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties. International Journal of Systems Science, 2015, 46 (16): 3019- 3031. doi: 10.1080/00207721.2014.886743 | 
| 21 | HUANG Y, SUN C, QIAN C. Linear parameter varying switching attitude tracking control for a near space hypersonic vehicle via multiple Lyapunov functions. Asian Journal of Control, 2015, 17 (2): 523- 534. | 
| 22 | WANG Y, JIANG C, WU Q. Attitude tracking control for variable structure near space vehicles based on switched nonlinear systems. Chinese Journal of Aeronautics, 2013, 26 (1): 186- 193. | 
| 23 | ZHANG Y,   JIANG Z,   YANG H,  et al.  High-order extended state observer-enhanced control for a hypersonic flight vehicle with parameter uncertainty and external disturbance. Proc. of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229 (13): 2481- 2496. doi: 10.1177/0954410015578480 | 
| 24 | CASTAÑEDA H,   SALAS-PEÑA O S,   DELEÓN-MORALES J.   Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Transactions, 2017, 66, 226- 232. doi: 10.1016/j.isatra.2016.09.013 | 
| 25 | MA D, XIA Y, LI T, et al. Active disturbance rejection and predictive control strategy for a quadrotor helicopter. IET Control Theory & Applications, 2016, 10 (17): 2213- 2222. | 
| 26 | GUO B Z, ZHAO Z. On the convergence of an extended state observer for nonlinear systems with uncertainty. Systems & Control Letters, 2011, 60 (6): 420- 430. | 
| 27 | ZHAO Z L, GUO B Z. Extended state observer for uncertain lower triangular nonlinear systems. Systems & Control Letters, 2015, 85, 100- 108. | 
| 28 | RAN M,   WANG Q,   DONG C.   Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control. Automatica, 2016, 63, 302- 310. doi: 10.1016/j.automatica.2015.10.010 | 
| 29 | WEISSHAAR T A.   Morphing aircraft systems:historical perspectives and future challenges. Journal of Aircraft, 2013, 50 (2): 337- 353. doi: 10.2514/1.C031456 | 
| 30 | COLGREN R,   KESHMIRI S,   MIRMIRANI M.   Nonlinear ten-degree-of-freedom dynamics model of a generic hypersonic vehicle. Journal of Aircraft, 2009, 46 (3): 800- 813. doi: 10.2514/1.35644 | 
| 31 | CHEN M, YU J. Disturbance observer-based adaptive sliding mode control for near space vehicles. Nonlinear Dynamics, 2015, 82 (4): 1671- 1682. | 
| 32 | YOU M, ZONG Q, TIAN B, et al. Comprehensive design of uniform robust exact disturbance observer and fixed-time controller for reusable launch vehicles. IET Control Theory & Applications, 2018, 12 (5): 638- 648. | 
| 33 | SU R, ZONG Q, TIAN B, et al. Comprehensive design of disturbance observer and non-singular terminal sliding mode control for reusable launch vehicles. IET Control Theory & Applications, 2015, 9 (12): 1821- 1830. | 
| 34 | SHAO X L,   WANG H L.   Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer. ISA Transactions, 2014, 53 (6): 1771- 1786. doi: 10.1016/j.isatra.2014.09.021 | 
| 35 | DONG Q,   ZONG Q,   TIAN B,  et al.  Adaptive disturbance observer-based finite-time continuous fault-tolerant control for reentry RLV. International Journal of Robust and Nonlinear Control, 2017, 27 (18): 4275- 4295. doi: 10.1002/rnc.3796 | 
| 36 | WANG X,   SHIRINZADEH B.   Rapid-convergent nonlinear differentiator. Mechanical Systems and Signal Processing, 2012, 28, 414- 431. doi: 10.1016/j.ymssp.2011.09.026 | 
| 37 | VÁZQUEZ C,   ARANOVSKIY S,   FREIDOVICH L B,  et al.  Time-varying gain differentiator:a mobile hydraulic system case study. IEEE Trans. on Control Systems Technology, 2016, 24 (5): 1740- 1750. doi: 10.1109/TCST.2015.2512880 | 
| 38 | FILIPPOV A F. Differential equations with discontinuous righthand sides:control systems. New York: Springer, 1988. | 
| 39 | JIA Z, YU J, MEI Y, et al. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerospace Science and Technology, 2017, 68 (1): 299- 307. | 
| 40 | HARUNA A,   MOHAMED Z,   EFE M O,  et al.  Dual boundary conditional integral backstepping control of a twin rotor MIMI system. Journal of the Franklin Institute, 2017, 354 (15): 6831- 6854. doi: 10.1016/j.jfranklin.2017.08.050 | 
| 41 | RASHAD R,   ABOUDONIA A,   EI-BADAWY A.   A novel disturbance observer-based backstepping controller with command filtered compensation for a MIMI system. Journal of the Franklin Institute, 2016, 353 (16): 4039- 4061. doi: 10.1016/j.jfranklin.2016.07.017 | 
| 42 | POLYAKOV A,   FRIDMAN L.   Stability notions and Lyapunov functions for sliding mode control systems. Journal of the Franklin Institute, 2014, 351 (4): 1831- 1865. doi: 10.1016/j.jfranklin.2014.01.002 | 
| 43 | MANCILLA-AGUILAR J L, GARCIA R A. On converse Lyapunov theorems for ISS and iISS switched nonlinear systems. Systems & Control Letters, 2001, 42 (1): 47- 53. | 
| 44 | KHALIL H K. Nonlinear systems. Upper Saddle River, New Jersey: Prentice Hall, 2002. | 
| 45 | LIBERZON D. Switching in systems and control. New York: Springer Verlag, 2003. | 
| No related articles found! | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||