1 |
WIDROW B, STEARNS S D. Adaptive signal processing. Englewood Cliffs: Prentice-Hall, 1985.
|
2 |
HAYKIN S. Adaptive filter theory. 4th ed. Upper Saddle Rier, New Jersey: Prentice-Hall, 2002.
|
3 |
BENESTY J, HUANG Y. Adaptive signal processingapplications to real-world problems. Berlin: Springer-Verlag, 2003.
|
4 |
HUANG Y, BENESTY J, CHEN J. Acoustic MIMO signal processing. Boston, MA: Springer, 2006.
|
5 |
MA T, CHEN J, CHEN W, et al. Unsupervised robust adaptive filtering against impulsive noise. Journal of Systems Engineering and Electronics, 2012, 23 (1): 32- 39.
doi: 10.1109/JSEE.2012.00005
|
6 |
GUO L, JUNG L. Necessary and sufficient conditions for stability of LMS. IEEE Trans. on Automatic Control, 1995, 42 (6): 761- 770.
|
7 |
HASSIBI B, SAYED A H, KAILATH T. H∞ optimality of the LMS algorithm. IEEE Trans. on Signal Processing, 1996, 44 (2): 267- 280.
doi: 10.1109/78.485923
|
8 |
EVANS J B, XUE P, LIU B. Analysis and implementation of variable step size adaptive algorithms. IEEE Trans. on Signal Processing, 1993, 41 (8): 2517- 2535.
doi: 10.1109/78.229885
|
9 |
ABOULNASR T, MAYYAS K. A robust variable step-size LMS-type algorithm:analysis and simulations. IEEE Trans. on Signal Processing, 1997, 45 (3): 631- 639.
doi: 10.1109/78.558478
|
10 |
PAZAITIS D I, CONSTANTINIDES A G. A novel kurtosis driven variable step-size adaptive algorithm. IEEE Trans. on Signal Processing, 2002, 47 (3): 864- 872.
|
11 |
ANTWEILER C, GRUNWALD J, QUACK H. Approximation of optimal step size control for acoustic echo cancellation. Proc. of the IEEE International Conference on Acoustics, 1997, 295- 298.
|
12 |
MORGAN D R, KRATZER S G. On a class of computationally efficient, rapidly converging, generalized NLMS algorithms. IEEE Signal Processing Letters, 1996, 3 (8): 245- 247.
doi: 10.1109/97.511808
|
13 |
GOLLAMUDI S, NAGARAJ S, KAPOOR S, et al. Setmembership filtering and a set-membership normalized LMS algorithm with an adaptive step size. IEEE Signal Processing Letters, 1998, 5 (5): 111- 114.
doi: 10.1109/97.668945
|
14 |
SHIN H C, SAYED A H, SONG W J. Variable step-size NLMS and affine projection algorithms. IEEE Signal Processing Letters, 2008, 11 (2): 132- 135.
|
15 |
BENESTY J, REY H, VEGA L R, et al. A nonparametric VSS NLMS algorithm. IEEE Signal Processing Letters, 2006, 13 (10): 581- 584.
doi: 10.1109/LSP.2006.876323
|
16 |
HUANG H C, LEE J. A new variable step-size NLMS algorithm and its performance analysis. IEEE Trans. on Signal Processing, 2012, 60 (4): 2055- 2060.
doi: 10.1109/TSP.2011.2181505
|
17 |
ARABLOUEI R, DOGANCAY K. Linearly-constrained recursive total least-squares algorithm. IEEE Signal Processing Letters, 2012, 19 (12): 821- 824.
doi: 10.1109/LSP.2012.2221705
|
18 |
BENESTY J, GAENSLER T, MORGAN D R, et al. Advances in network and acoustic echo cancellation. Berlin: SpringerVerlag, 2001.
|
19 |
FAZA A, GRANT S L, BENESTY J. Adaptive regularization in frequency-domain NLMS filters. Proc. of the Signal Processing Conference, 2012, 2625- 2628.
|
20 |
BENESTY J, PALEOLOGU C, CIOCHINA S. On regularization in adaptive filtering. IEEE Trans. on Audio, Speech and Language Processing, 2011, 19 (6): 1734- 1742.
doi: 10.1109/TASL.2010.2097251
|
21 |
NI J, LI F. Variable regularisation parameter sign subband adaptive filter. Electronics Letters, 2010, 46 (24): 1605- 1607.
doi: 10.1049/el.2010.2406
|
22 |
MADER A, PUDER H, SCHMIDT G U. Step-size control for acoustic echo cancellation filters-an overview. Signal Processing, 2000, 80 (9): 1697- 1719.
doi: 10.1016/S0165-1684(00)00082-7
|
23 |
SULYMAN A I, ZERGUINE A. Convergence and steady-state analysis of a variable step-size NLMS algorithm. Signal Processing, 2003, 83 (6): 1255- 1273.
doi: 10.1016/S0165-1684(03)00044-6
|
24 |
PARK P, CHANG M, KONG N. Scheduled-stepsize NLMS algorithm. IEEE Signal Processing Letters, 2009, 16 (12): 1055- 1058.
doi: 10.1109/LSP.2009.2026197
|
25 |
SONG I, PARK P G. A normalized least-mean-square algorithm based on variable-step-size recursion with innovative input data. IEEE Signal Processing Letters, 2012, 19 (12): 817- 820.
doi: 10.1109/LSP.2012.2221699
|
26 |
YUAN Z, SONGTAO X. New LMS adaptive filtering algorithm with variable step size. Proc. of the International Conference on Vision, Image and Signal Processing, 2017, 1- 4.
|
27 |
LI M, XI X. A new variable step-size NLMS adaptive filtering algorithm. Proc. of the Information Technology and Applications, 2013, 236- 239.
|
28 |
HUAN Q Y, QIU X H, LIU X F. Variable step LMS algorithm using norm of the hyperbolic tangent function. Journal of Signal Processing, 2014, 30 (1): 93- 99.
|
29 |
WANG Y, SUN X, LIU L. A variable step size LMS adaptive filtering algorithm based on L2 norm. Proc. of the Signal Processing, Communications and Computing, 2016, 1- 6.
|
30 |
CIOCHINĂ S, PALEOLOGU C, BENESTY J. An optimized NLMS algorithm for system identification. Signal Processing, 2016, 118, 115- 121.
doi: 10.1016/j.sigpro.2015.06.016
|
31 |
BHOTTO M Z A, ANTONIOU A. New improved recursive least-squares adaptive-filtering algorithms. IEEE Trans. on Circuits and Systems Ⅰ:Regular Papers, 2013, 60 (6): 1548- 1558.
doi: 10.1109/TCSI.2012.2220452
|
32 |
CASTOLDI F T, DE CAMPOS M L R. Application of a minimum-disturbance description to constrained adaptive filters. IEEE Signal Processing Letters, 2013, 20 (12): 1215- 1218.
doi: 10.1109/LSP.2013.2284384
|
33 |
GUL M M U, MA X, LEE S. Timing and frequency synchronization for OFDM downlink transmissions using zadoff-chu sequences. IEEE Trans. on Wireless Communications, 2015, 14 (3): 1716- 1729.
doi: 10.1109/TWC.2014.2372757
|