1 |
ZHOU Z H. Machine learning. Beijing: Tsinghua University Press, 2016.
|
2 |
KNERR S, PERSONNAZ L, DREYFUS G. Single-layer learning revisited:a stepwise procedure for building and training a neural network. Neurocomputing, 1990, 68 (11): 41- 50.
|
3 |
FRIEDMAN J H. Another approach to polychotomous classification. Technical Report, Departmet of Statistics, Stanford University, 1996.
|
4 |
KREBEL U H G. Pairwise classification and support vector machines. Advances in kernel methods: support vector learning. Cambridge, MA: MIT Press, 1999: 255-268.
|
5 |
DING S F, ZHANG X K, AN Y X, et al. Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification. Pattern Recognition, 2017, 67, 32- 46.
doi: 10.1016/j.patcog.2017.02.011
|
6 |
ZHANG Y, LI B, LU H, et al. Sample-specific SVM learning for person re-identification. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 1278- 1287.
|
7 |
AN Y X, DING S F, SHI S H, et al. Discrete space reinforcement learning algorithm based on support vector machine classification. Pattern Recognition Letters, 2018, 111, 30- 35.
doi: 10.1016/j.patrec.2018.04.012
|
8 |
DING S F, AN Y X, ZHANG X K, et al. Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing, 2017, 225 (C): 157- 163.
|
9 |
DING S F, ZHANG X K, YU J Z. Twin support vector machines based on fruit fly optimization algorithm. International Journal of Machine Learning and Cybernetics, 2016, 7 (2): 193- 203.
doi: 10.1007/s13042-015-0424-8
|
10 |
MUCHLINSKI D, SIROKY D, HE J R, et al. Comparing random forest with logistic regression for predicting classimbalanced civil war onset data. Political Analysis, 2017, 24 (1): 87- 103.
|
11 |
GUO H, LI Y, LI Y, et al. BPSO-adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification. Engineering Applications of Artificial Intelligence, 2016, 49 (C): 176- 193.
|
12 |
DONG G, KUANG G, WANG N, et al. SAR target recognition via joint sparse representation of monogenic signal. IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing, 2015, 8 (7): 3316- 3328.
|
13 |
ZHENG H, GENG X, TAO D, et al. A multi-task model for simultaneous face identification and facial expression recognition. Neurocomputing, 2016, 171 (C): 515- 523.
|
14 |
LI C, BAO W, XU L, et al. Clustered multi-task learning for automatic radar target recognition. Sensors, 2017, 17 (10): 2218.
doi: 10.3390/s17102218
|
15 |
BICKEL P J, RITOV Y, TSYBAKOV A B. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 2009, 37 (4): 1705- 1732.
doi: 10.1214/08-AOS620
|
16 |
ZU C, JIE B, LIU M, et al. Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment. Brain Imaging&Behavior, 2016, 10 (4): 1148- 1159.
|
17 |
LIU A, LU Y, NIE W, et al. HEp-2 cells classification via clustered multi-task learning. Neurocomputing, 2016, 195 (C): 195- 201.
|
18 |
ZHANG Y, YEUNG D Y. A regularization approach to learning task relationships in multitask learning. ACM Trans. on Knowledge Discovery from Data, 2014, 8 (3): 1- 31.
|
19 |
EVGENIOU T, PONTIL M. Regularized multi-task learning. Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, 109- 117.
|
20 |
ARGYRIOU A, EVGENIOU T, PONTIL M. Multi-task feature learning. Proc. of the 20th Annual Conference on Neural Information Processing Systems, 2007, 41- 48.
|
21 |
ARGYRIOU A, EVGENIOU T, PONTIL M. Convex multitask feature learning. Machine Learning, 2008, 73 (3): 243- 272.
doi: 10.1007/s10994-007-5040-8
|
22 |
KEERTHI S S, SHEVADE S K. SMO algorithm for leastsquares SVM formulations. Neural Computation, 2003, 15 (2): 487- 507.
doi: 10.1162/089976603762553013
|
23 |
PIATETSKY-SHAPIRO G. Advances in knowledge discovery and data mining. Menlo Park: AAAI Press, 1996.
|
24 |
DUDA R O, HART P E, STORK D G. Pattern classification and scene analysis. 2nd ed. New York: Wiley Interscience, 1995.
|
25 |
FELLER W. An introduction to probability theory and its applications. New York: Wiley, 1968.
|
26 |
JAIN A K. Data clustering:50 years beyond K-means. Pattern Recognition Letters, 2010, 31 (8): 651- 666.
doi: 10.1016/j.patrec.2009.09.011
|
27 |
CHADHA A, KUMAR S. An improved K-means clustering algorithm: a step forward for removal of dependency on K. Proc. of the IEEE International Conference on Optimization, Reliabilty, and Information Technology, 2014: 136-140.
|
28 |
KAIE S S, BERE S S. An efficient K-means clustering algorithm. International Journal of Engineering Education and Technology, 2015, 3 (2): 1- 8.
|
29 |
EL AGHA M, ASHOUR W M. Efficient and fast initialization algorithm for k-means clustering. International Journal of Intelligent Systems and Applications, 2012, 4 (1): 21.
doi: 10.5815/ijisa.2012.01.03
|
30 |
CHANG C C, LIN C J. LIBSVM: a library for support vector machines. ACM Trans. on Intelligent Systems and Technology, 2011, 2(3): 27.
|
31 |
GONG P, YE J, ZHANG C. Robust multi-task feature learning. Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012: 895-903.
|