1 |
LI Y M, TONG S C, LI T S. Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. on Cybernetics, 2014, 45 (10): 2299- 2308.
|
2 |
YANG Y, YUE D, XUE Y S. Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. Journal of the Franklin Institute, 2015, 352 (5): 2129- 2151.
doi: 10.1016/j.jfranklin.2015.02.009
|
3 |
GOUTA H, SAID S H, SAHLI F M. Model-based predictive and backstepping controllers for a state coupled four-tank system with bounded control inputs:a comparative study. Journal of the Franklin Institute, 2015, 352 (11): 4864- 4889.
doi: 10.1016/j.jfranklin.2015.08.004
|
4 |
AZINHEIRA J R, MOUTINHO A. Hover control of an UAV with backstepping design including input saturations. IEEE Trans. on Control Systems Technology, 2008, 16 (3): 517- 526.
|
5 |
WANG H Q, CHEN B, LIU X P, et al. Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation. Information Sciences, 2014, 269 (10): 300- 315.
|
6 |
LI Y M, TONG S C, LI T S. Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets&Systems, 2014, 248, 138- 155.
|
7 |
LI Y M, TONG S C, LI T S. Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. on Fuzzy Systems, 2016, 24 (4): 841- 853.
doi: 10.1109/TFUZZ.2015.2486811
|
8 |
LI Y M, TONG S C, LI T S. Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. on Fuzzy Systems, 2015, 23 (4): 1228- 1241.
doi: 10.1109/TFUZZ.2014.2348017
|
9 |
TEEL A R, PRALY L. On assigning the derivative of a disturbance attenuation control lyapunov function. Mathematics of Control, Signals and Systems, 2000, 13 (2): 95- 124.
|
10 |
LOGEMANN H, RYAN E. Time-varying and adaptive discrete-time low-gain control of infinite-dimensional linear systems with input nonlinearities. Mathematics of Control, Signals and Systems, 2000, 13 (4): 293- 317.
doi: 10.1007/PL00009871
|
11 |
NOROOZI N, KHAYATIAN A, GEISELHART R. A characterization of integral input-to-state stability for hybrid systems. Mathematics of Control, Signals and Systems, 2017, 29 (3): 1- 32.
|
12 |
LIM Y H, OH K K, AHN H S. Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. on Automatic Control, 2013, 58 (4): 1062- 1067.
doi: 10.1109/TAC.2012.2218064
|
13 |
SHAHRI E S A, ALFI A, MACHADO J A T. An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Applied Mathematics Letters, 2015, 47, 26- 34.
doi: 10.1016/j.aml.2015.02.020
|
14 |
SHAHRI E S A, BALOCHIAN S. Analysis of fractionalorder linear systems with saturation using Lyapunov's second method and convex optimization. International Journal of Automation and Computing, 2015, 12 (4): 440- 447.
doi: 10.1007/s11633-014-0856-8
|
15 |
LUO J H. State-feedback control for fractional-order nonlinear systems subject to input saturation. Mathematical Problems in Engineering, 2014.
doi: 10.1155/2014/891639
|
16 |
UTKIN V, GULDNER J, SHI J. Sliding mode control in electro-mechanical systems. Boca Raton: CRC Press, 2009.
|
17 |
EDWARDS C, SPURGEON S K. Sliding mode control:theory and applications. Boca Raton: CRC Press, 1998.
|
18 |
UTKIN V I. Sliding modes in control and optimization. Berlin Heidelberg: Springer-Verlag, 1992.
|
19 |
FRIDMAN L, LEVANT A. Sliding mode control enginerring. Boca Raton: CRC Press, 2002.
|
20 |
SI-AMMOUR A, DJENNOUNE S, BETTAYEB M. A sliding mode control for linear fractional systems with input and state delays. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 (5): 2310- 2318.
doi: 10.1016/j.cnsns.2008.05.011
|
21 |
DADRAS S, MOMENI H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 367- 377.
doi: 10.1016/j.cnsns.2011.04.032
|
22 |
MUJUMDAR A, KURODE S, TAMHANE B. Fractionalorder sliding mode control for single link flexible manipulator. Proc. of the IEEE International Conference on Control Applications, 2013: 288-293.
|
23 |
ZHANG D, CAO L, TANG S. Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR. International Journal of Advanced Robotic Systems, 2017, 14 (2): 1- 15.
|
24 |
MÖ E F E. New trends in nanotechnology and fractional calculus applications. Dordrecht: Springer, 2010.
|
25 |
RAMÍREZ H S, BATTLE V F. Modern sliding mode control theory. Berlin: Springer, 2008.
|
26 |
PISANO A, RAPAI'C M, USAI E. Sliding modes after the first decade of the 21st century:state of the art. Berlin: Springer Science and Business Media, 2011.
|
27 |
LI C P, ZHANG F R. A survey on the stability of fractional differential equations. European Physical Journal Special Topics, 2011, 193, 27- 47.
doi: 10.1140/epjst/e2011-01379-1
|
28 |
WOODHOUSE N M J. Special relativity. London: SpringerVerlag, 2003.
|
29 |
ULRICH L, ROHDE G C J, PODDAR A K, et al. Introduction to differential calculus:systematic studies with engineering applications for beginners. New York: Wiley, 2012.
|
30 |
PODLUBNY I. Fractional differential equations:an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Salt Lake: Academic Press, 1998.
|
31 |
LI Y, CHEN Y Q, PODLUBNY I. Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized mittag-leffler stability. Computers and Mathematics with Applications, 2010, 59 (5): 1810- 1821.
doi: 10.1016/j.camwa.2009.08.019
|
32 |
SASTRY S, BODSON M. Adapative control-stability convergence and robustness. New Jersey: Prentice Hall, 1989.
|
33 |
ZHANG B T, PI Y G, LUO Y. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Transactions, 2012, 51 (5): 649- 656.
doi: 10.1016/j.isatra.2012.04.006
|
34 |
CHEN W C. Nonlinear dynamics and chaos in a fractionalorder financial system. Chaos, Solitons and Fractals, 2008, 36 (5): 1305- 1314.
doi: 10.1016/j.chaos.2006.07.051
|
35 |
ZHEN W, XIA H, GUODONG S. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Computers and Mathematics with Applications, 2011, 62 (3): 1531- 1539.
doi: 10.1016/j.camwa.2011.04.057
|
36 |
JIANG Z P. A note on chaotic secure communication systems. IEEE Trans. on Circuits Systerm I-Fundamental Theory and Applications, 2002, 49 (1): 92- 96.
doi: 10.1109/81.974882
|
37 |
JIA H Y, TAO Q, CHEN Z Q. Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Systems Science&Control Engineering, 2014, 2 (1): 745- 750.
|