| 1 | BRUNO S,   GUSTAVO F.   Performance analysis of the classic and robust Chinese remainder theorems in pulsed Doppler radars. IEEE Trans. on Signal Processing, 2018, 66 (18): 4898- 4903. doi: 10.1109/TSP.2018.2863667
 | 
																													
																						| 2 | XU B Q,   ZHAO Y B.   Joint transmit-receive B-PARAFAC method for angle estimation in bistatic MIMO radar. Digital Signal Processing, 2019, 92, 54- 61. doi: 10.1016/j.dsp.2019.03.001
 | 
																													
																						| 3 | XU B Q,   ZHAO Y B.   Transmit beamspace-based DOD and DOA estimation method for bistatic MIMO radar. Signal Processing, 2019, 157, 88- 96. doi: 10.1016/j.sigpro.2018.11.016
 | 
																													
																						| 4 | XU B Q,   ZHAO Y B,   CHENG Z F,  et al.  A novel unitary PARAFAC method for DOD and DOA estimation in bistatic MIMO radar. Signal Processing, 2017, 138, 273- 279. doi: 10.1016/j.sigpro.2017.03.016
 | 
																													
																						| 5 | BASIKOLO T,   ICHIGE K,   ARAI H.   Underdetermined DOA estimation in presence of mutual coupling for sparse circular array. Proc. of the IEEE International Symposium on Antennas and Propagation, 2017, 985- 991. | 
																													
																						| 6 | VAIDYANATHAN P P,   PIYA P.   Theory of sparse coprime sensing in multiple dimensions. IEEE Trans. on Signal Processing, 2011, 59 (8): 3592- 3608. doi: 10.1109/TSP.2011.2135348
 | 
																													
																						| 7 | LI S,   CHEN H.   A novel method of DOA estimation on sparse uniform circular array. Proc. of the International Conference on Radar, 2016, 488- 496. | 
																													
																						| 8 | PAL P,   VAIDYANATHAN P P.   A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. on Signal Processing, 2010, 58 (8): 4167- 4181. doi: 10.1109/TSP.2010.2049264
 | 
																													
																						| 9 | SCHMICT R.   Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280. doi: 10.1109/TAP.1986.1143830
 | 
																													
																						| 10 | STOICA P,   NEHORAI A.   Music, maximum likelihood, and Cramer-Rao bound. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (5): 720- 741. doi: 10.1109/29.17564
 | 
																													
																						| 11 | ROY R,   KAILATH T.   ESPRIT estimation of signal parameter via rotational invariance techniques. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995. doi: 10.1109/29.32276
 | 
																													
																						| 12 | DAI J S,   WU Z,   TANG Z.   Real-valued sparse representation method for the DOA estimation with uniform linear array. Proc. of the 31st Chinese Control Conference, 2012, 25- 27. | 
																													
																						| 13 | TANG B,   MO L,   WU H G.   DOA estimation approach using sparse representation for sparse line array. Proc. of the IEEE International Conference on Communication Software and Networks, 2015, 654- 659. | 
																													
																						| 14 | LIU H Q,   ZHAO L M,   LI Y,  et al.  A sparse-based approach for DOA estimation and array calibration in uniform linear array. IEEE Sensors Journal, 2016, 16 (15): 6018- 6027. doi: 10.1109/JSEN.2016.2577712
 | 
																													
																						| 15 | LI X P,   CAO Y H.   Robust generalized Chinese-remainder-theorem-based DOA estimation for a coprime array. IEEE Access, 2018, 6, 60361- 60368. doi: 10.1109/ACCESS.2018.2875402
 | 
																													
																						| 16 | WENG Z Y,   PETAR M D.   A search-free DOA estimation algorithm for coprime arrays. Digital Signal Processing, 2014, 24, 27- 33. doi: 10.1016/j.dsp.2013.10.005
 | 
																													
																						| 17 | YE C C,   LIANG H,   LIU H F.   An effective method for joint estimation of chirp rates, initial frequencies and DOAs of multiple LFM signals with sub-Nyquist spatial-temporal sampling. Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2015, 1- 4. | 
																													
																						| 18 | QIN G D,   MOENESS G,   ZHANG Y D.   DOA estimation exploiting sparse array motions. IEEE Trans. on Signal Processing, 2019, 67 (11): 3013- 3027. doi: 10.1109/TSP.2019.2911261
 | 
																													
																						| 19 | GUO M R,   ZHANG Y D,   CEHN T.   DOA estimation using compressed sparse array. IEEE Trans. on Signal Processing, 2018, 66 (15): 4133- 4145. doi: 10.1109/TSP.2018.2847645
 | 
																													
																						| 20 | SHEN F F,   LIU Y M,   ZHAO G H,  et al.  Sparsity-based off-grid DOA estimation with uniform rectangular arrays. IEEE Sensors Journal, 2018, 18 (8): 3384- 3390. doi: 10.1109/JSEN.2018.2800906
 | 
																													
																						| 21 | CHEN P,   CAO Z X,   CHEN Z M,  et al.  Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling. IEEE Trans. on Signal Processing, 2019, 67 (1): 208- 220. doi: 10.1109/TSP.2018.2881663
 | 
																													
																						| 22 | LIU L,   WEI P.   Joint DOA and frequency estimation with sub-Nyquist sampling in the sparse array system. IEEE Signal Processing Letters, 2018, 25 (9): 1285- 1289. doi: 10.1109/LSP.2018.2848838
 | 
																													
																						| 23 | HE C,   CHEN J F,   LIANG X L.   High-accuracy DOA estimation based on time-modulated array with long and short baselines. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (8): 1391- 1395. doi: 10.1109/LAWP.2018.2846805
 | 
																													
																						| 24 | WANG Z,   ZHANG X F,   GONG P,  et al.  DOA estimation for coprime liner arrays: an ambiguity-free method involving full DOFs. IEEE Communitions Letters, 2018, 22 (3): 562- 565. doi: 10.1109/LCOMM.2017.2787698
 | 
																													
																						| 25 | LI Q,   SU T,   WU K.   Accurate DOA estimation for large-scale uniform circular array using a single snapshot. IEEE Communications Letters, 2019, 23 (2): 302- 305. | 
																													
																						| 26 | XU L Y,   WEN F Q,   ZHANG X F.   A novel unitary PARAFAC algorithm for joint DOA and frequency estimation. IEEE Communications Letters, 2019, 23 (4): 660- 663. doi: 10.1109/LCOMM.2019.2896593
 | 
																													
																						| 27 | YANG X P,   WU X C,   LI S,  et al.  A fast and robust DOA estimation method based on JSVD for co-prime array. IEEE Access, 2018, 6, 41697- 41705. doi: 10.1109/ACCESS.2018.2860680
 | 
																													
																						| 28 | LIU J Z,   HOU Z X,   WANG C Y.   Windowed all-phase DFT modulated in time domain and its application in spectrum analysis. Proc. of the International Conference on Wireless Communications, Networking and Mobile, 2009, 1- 4. | 
																													
																						| 29 | LIX W,   LIANG H,   XIA X G.   A robust Chinese remainder theorem with its application in frequency estimation from under-sampled waveforms. IEEE Trans. on Signal Processing, 2009, 57 (11): 4314- 4322. doi: 10.1109/TSP.2009.2025079
 | 
																													
																						| 30 | WANG W J,   XIA X G.   A closed-form robust Chinese remainder theorem and its performance analysis. IEEE Trans. on Signal Proessing, 2010, 58 (11): 5655- 5666. doi: 10.1109/TSP.2010.2066974
 | 
																													
																						| 31 | PAPI F,   KYOVTOROV V,   GIULIANI R,  et al.  Bernoulli filter for track-before-detect using MIMO radar. IEEE Signal Processing Letters, 2014, 21 (9): 1145- 1149. doi: 10.1109/LSP.2014.2325566
 | 
																													
																						| 32 | HABTEMARIAM B K,   THARMARASA R,   KIRUBARAJAN T.   PHD filter based track-before-detect for MIMO radars. Signal Processing, 2012, 92 (1): 667- 678. | 
																													
																						| 33 | Li S Q,   YI W,   WANG B L.   Multi-object tracking for generic observation model using labeled random finite sets. IEEE Trans. on Signal Processing, 2018, 66 (2): 368- 383. doi: 10.1109/TSP.2017.2764864
 | 
																													
																						| 34 | FRANCESCO P,   VO B N,   VO B T.   Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Trans. on Signal Processing, 2015, 63 (20): 5487- 5497. doi: 10.1109/TSP.2015.2454478
 | 
																													
																						| 35 | VO B N,   VO B T,   PHAM N T,  et al.  Joint detection and estimation of multiple objects from image observations. IEEE Trans. on Signal Processing, 2010, 58 (10): 5129- 5141. doi: 10.1109/TSP.2010.2050482
 |