| 1 | KANG C H, KIM S Y, PARK C G A GNSS interference identification and tracking based on adaptive fading Kalman filter. Advanced Materials for Applied Science and Technology, 2014, 47 (3): 3250- 3255. | 
																													
																						| 2 | AMIN M G, BORIO D, ZHANG Y D, et al Time-frequency analysis for GNSSs: from interference mitigation to system monitoring. IEEE Signal Processing Magazine, 2017, 34 (5): 85- 95. doi: 10.1109/MSP.2017.2710235
 | 
																													
																						| 3 | WANG P, CETIN E, DEMPSTER A G, et al GNSS interference detection using statistical analysis in the time-frequency domain. IEEE Trans. on Aerospace and Electronic Systems, 2017, 54 (1): 416- 428. | 
																													
																						| 4 | MOSAVI M R, SHAFIEE, F Narrowband interference suppression for GPS navigation using neural networks. GPS Solutions, 2016, 20 (3): 341- 351. doi: 10.1007/s10291-015-0442-8
 | 
																													
																						| 5 | WANG J X, CHANG Q, TIAN Y, et al Research on GNSS interference signal detection method. Navigation Positioning and Timing, 2020, 7 (4): 117- 122. | 
																													
																						| 6 | MAKARENKO A V. Deep learning algorithms for signal recognition in long perimeter monitoring distributed fiber optic sensors. Proc. of the 26th International Workshop on Machine Learning for Signal Processing, 2016. DOI: 10.1109/MLSP.2016.7738862. | 
																													
																						| 7 | SCHMIDT M, BLOCK D, MEIER U Wireless interference identification with convolutional neural networks. Proc. of the 15th International Conference on Industrial Informatics, 2017, 180- 185. | 
																													
																						| 8 | ZHANG X W, SEYFI T, JU S T, et al. Deep learning for interference identification: band, training SNR, and sample selection. Proc. of the 20th International Workshop on Signal Processing Advances in Wireless Communications, 2019. DOI: 101109/SPAWC.2019.8815481. | 
																													
																						| 9 | ZHANG M, ZENG Y, HAN Z D, et al. Automatic modulation recognition using deep learning architectures. Proc. of the 19th International Workshop on Signal Processing Advances in Wireless Communications, 2018. DOI: 10.1109/SPAWC.2018.8446021. | 
																													
																						| 10 | RIYAZ S, SANKHE K, IOANNIDIS S, et al Deep learning convolutional neural networks for radio identification. IEEE Communications Magazine, 2018, 56 (9): 146- 152. doi: 10.1109/MCOM.2018.1800153
 | 
																													
																						| 11 | CZECH D, MISHRA A, INGGS M A CNN and LSTM-based approach to classifying transient radio frequency interference. Astronomy and Computing, 2018, 25, 52- 57. doi: 10.1016/j.ascom.2018.07.002
 | 
																													
																						| 12 | YIN Z D, ZHANG R, WU Z L, et al. Co-channel multi-signal modulation classification based on convolution neural network. Proc. of the 89th Vehicular Technology Conference, 2019. DOI: 10.1109/VTCSpring.2019.8746292. | 
																													
																						| 13 | YU J Y, ALHASSOUN M, BUEHRER R M. Interference classification using deep neural networks. Proc. of the IEEE 92nd Vehicular Technology Conference, 2020. DOI:10.1109/VTC2020-Fall49728.2020.9348658. | 
																													
																						| 14 | ZHAO B D, LU H Z, CHEN S F, et al Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 2017, 28 (1): 162- 169. doi: 10.21629/JSEE.2017.01.18
 | 
																													
																						| 15 | LI B Q, HU X H Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach. Journal of Systems Engineering and Electronics, 2019, 30 (2): 20- 26. | 
																													
																						| 16 | HOCHREITER S, SCHMIDHUBER J Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780. doi: 10.1162/neco.1997.9.8.1735
 | 
																													
																						| 17 | ZHAO R, YAN R Q, WANG J J, et al Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 2017, 17 (2): 273- 290. doi: 10.3390/s17020273
 | 
																													
																						| 18 | YILDIRIM O A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification. Computers in Biology and Medicine, 2018, 96, 189- 202. doi: 10.1016/j.compbiomed.2018.03.016
 | 
																													
																						| 19 | KOSOWSKI G, RYMARCZYK T, WOJCIK D, et al The use of time-frequency moments as inputs of LSTM network for ECG signal classification. Electronics, 2020, 9 (9): 1452- 1473. doi: 10.3390/electronics9091452
 | 
																													
																						| 20 | WEST N, O'SHEA T. Deep architectures for modulation recognition. Proc. of the International Symposium on Dynamic Spectrum Access Networks, 2017. DOI: 10.1109/DySPAN.2017.7920754. | 
																													
																						| 21 | QIN Y, YANG J, ZHU M T, et al. Fast recognition of pull-off jamming using LSTM. Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. DOI: 10.1109/ICSIDP47821.2019.9173490. | 
																													
																						| 22 | MA J T, LIU H, PENG C, et al Unauthorized broadcasting identification: a deep LSTM recurrent learning approach. IEEE Trans. on Instrumentation and Measurement, 2020, 69 (9): 5981- 5983. doi: 10.1109/TIM.2020.3008988
 | 
																													
																						| 23 | WANG X L, ZHANG Y F, ZHANG H X, et al Radio frequency signal identification using transfer learning based on LSTM. Circuits, Systems, and Signal Processing, 2020, 39 (11): 5514- 5528. doi: 10.1007/s00034-020-01417-7
 | 
																													
																						| 24 | WU Z L, ZHAO Y L, YIN Z D, et al. Jamming signals classification using convolutional neural network. Proc. of the International Symposium on Signal Processing and Information Technology, 2017: 62−67. | 
																													
																						| 25 | LI X J, FU D, MOU W H, et al. An identification method of navigation signal interference type based on squeezenet model. Proc. of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference, 2020: 875−880. | 
																													
																						| 26 | SHARMA V, PAREY A A review of gear fault diagnosis using various condition indicators. Procedia Engineering, 2016, 144, 253- 263. doi: 10.1016/j.proeng.2016.05.131
 | 
																													
																						| 27 | BOASHASH B Estimating and interpreting the instantaneous frequency of a signal—part 1: fundamentals. Proceedings of the IEEE, 1992, 80 (4): 520- 538. doi: 10.1109/5.135376
 | 
																													
																						| 28 | BOASHASH B Estimating and interpreting the instantaneous frequency of a signal—part 2: algorithms and applications. Proceedings of the IEEE, 1992, 80 (4): 540- 568. doi: 10.1109/5.135378
 | 
																													
																						| 29 | VAKKURI A, YLI-HANKALA A, TALJA P, et al Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiologica Scandinavica, 2004, 48 (2): 145- 153. doi: 10.1111/j.0001-5172.2004.00323.x
 | 
																													
																						| 30 | PAN Y N, CHEN J, LI X L Spectral entropy: a complementary index for rolling element bearing performance degradation assessment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223 (5): 1223- 1231. doi: 10.1243/09544062JMES1224
 | 
																													
																						| 31 | SAXE A M, MCCLELLAND J L, GANGULI S Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Statistics, 2014, 3 (1): 1- 22. doi: 10.1002/sta4.39
 |