| 1 | VEETTIL S V, AQUINO M Statistical models to provide meaningful information to GNSS users in the presence of ionospheric scintillation. GPS Solutions, 2021, 25 (2): 54- 66. doi: 10.1007/s10291-020-01083-x
 | 
																													
																						| 2 | ISSA H, STIENNE G, REBOUL S, et al A probabilistic model for on-line estimation of the GNSS carrier-to-noise ratio. Signal Processing, 2021, 183 (4): 107992. | 
																													
																						| 3 | LI Y, ZOU X H, LIU P Y, et al Four-element array for GNSS attitude determination using IRLS: an improved rounding of long-short baseline approach. IEEE Trans. on Vehicular Technology, 2020, 69 (5): 4920- 4934. doi: 10.1109/TVT.2020.2978862
 | 
																													
																						| 4 | SUN Y Optimal parameter design of continuous phase modulation for future GNSS signals. IEEE Access, 2021, 99, 58487- 58502. | 
																													
																						| 5 | WANG C H, CUI X W, ZHU Y H, et al Thermal noise performance analysis for dual binary phase-shift keying tracking of standard BOC signals. IET Radar, Sonar & Navigation, 2020, 14, 1019- 1028. | 
																													
																						| 6 | AIKAWA Y Integrated optical digital-to-analogue converter for a 2-bit BPSK-modulated signal based on a silicon photonics waveguide. Electronics Letters, 2020, 56 (16): 830- 832. doi: 10.1049/el.2020.0950
 | 
																													
																						| 7 | ZHAO H W, ZHANG Z C, LUO X Z, et al Quality monitoring and biases estimation of BOC navigation signals. Journal of Systems Engineering and Electronics, 2019, 30 (3): 474- 484. doi: 10.21629/JSEE.2019.03.05
 | 
																													
																						| 8 | YOON S, CHAE K, SUN Y K A new approach to local signal design for enhanced TMBOC signal tracking. Journal of Electrical Engineering and Technology, 2020, 15 (4): 1837- 1845. doi: 10.1007/s42835-020-00451-4
 | 
																													
																						| 9 | JULIEN O, MACABIAU C, CANNON E, et al ASPeCT: unambiguous sine-BOC(n, n) acquisition/tracking technique for navigation applications. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (1): 150- 162. doi: 10.1109/TAES.2007.357123
 | 
																													
																						| 10 | LOHAN E S Statistical analysis of BPSK-like techniques for the acquisition of Galileo signals. Journal of Aerospace Computing, Information, and Communication, 2006, 3 (5): 234- 243. doi: 10.2514/1.17441
 | 
																													
																						| 11 | YAO Z, CUI X W, LU M Q, et al Pseudo- correlation-function-based unambiguous tracking technique for sine-BOC signals. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (4): 1782- 1796. doi: 10.1109/TAES.2010.5595594
 | 
																													
																						| 12 | SPANGENBERG S M, SCOTT I, MCLAUGHLIN S, et al An FFT-based approach for fast acquisition in spread spectrum communication systems. Wireless Personal Communications, 2000, 13 (1/2): 27- 55. | 
																													
																						| 13 | PAN Y, ZHANG T Q, ZHANG G, et al A novel acquisition algorithm based on PMF-apFFT for BOC modulated signals. IEEE Access, 2019, 7, 46686- 46694. doi: 10.1109/ACCESS.2019.2909787
 | 
																													
																						| 14 | YAN K, ZIEDAN N I, ZHANG H, et al Weak GPS signal tracking using FFT discriminator in open loop receiver. GPS Solution, 2016, 20 (2): 225- 237. doi: 10.1007/s10291-014-0431-3
 | 
																													
																						| 15 | FAN B, ZHANG K, QIN Y L, et al Discrete chirp-Fourier transform-based acquisition algorithm for weak global positioning system l5 signals in high dynamic environments. IET Radar, Sonar and Navigation, 2013, 7 (7): 736- 746. doi: 10.1049/iet-rsn.2012.0249
 | 
																													
																						| 16 | WON J H, PANY T, EISSFELLER B Iterative maximum likelihood estimators for high-dynamic GNSS signal tracking. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (4): 2875- 2893. doi: 10.1109/TAES.2012.6324667
 | 
																													
																						| 17 | XIA X, ZHAO J K, LONG H H, et al Fractional Fourier transform-based unassisted tracking method for global navigation satellite system signal carrier with high dynamics. IET Radar, Sonar and Navigation, 2016, 10 (3): 506- 515. doi: 10.1049/iet-rsn.2015.0219
 | 
																													
																						| 18 | LUO Y R, ZHANG L, SHEIMY N An improved DE-KFL for BOC signal tracking assisted by FRFT in a highly dynamic environment. Proc. of the IEEE Position, Location and Navigation Symposium, 2018, 1525- 1534. | 
																													
																						| 19 | OZAKTAS H M, ARIKAN O, KUTAY M A, et al Digital computation of the fractional fourier transform. IEEE Trans. on Signal Processing, 1996, 44 (9): 2141- 2150. doi: 10.1109/78.536672
 | 
																													
																						| 20 | WEI D Y, ZHANG Y J Fractional Stockwell transform: theory and applications. Digital Signal Processing, 2021, 115, 103090. doi: 10.1016/j.dsp.2021.103090
 | 
																													
																						| 21 | CHEN Y L, GUO L H, GONG Z X The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal. Acta Acustica, 2015, 40 (6): 761- 771. | 
																													
																						| 22 | ZHANG X P, LIAO G S, ZHU S Q, et al Efficient compressed sensing method for moving targets imaging by exploiting the geometry information of the defocused results. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (3): 517- 521. doi: 10.1109/LGRS.2014.2349035
 | 
																													
																						| 23 | ZHANG K, ZHAO S H, LIN T, et al Frequency- multiplying dual-chirp microwave waveform generation based on a dual-drive DP-MZM. Space Electronic Technology, 2020, 4, 109- 116. | 
																													
																						| 24 | HAO G C, GUO J, BAI Y X, et al Novel method for non-stationary signals via high-concentration time-frequency analysis using SSTFrFT. Circuits Systems and Signal Processing, 2020, 39, 5710- 5728. | 
																													
																						| 25 | GAO L, QI L, GUAN L The property of frequency shift in 2D-FRFT domain with application to image encryption. IEEE Signal Processing Letters, 2021, (28): 185- 189. | 
																													
																						| 26 | GUO Z, LU M F, WU J M, et al Fast FRFT-based method for estimating physical parameters from Newton ’s rings. Applied Optics, 2019, 58 (14): 3926- 3931. doi: 10.1364/AO.58.003926
 | 
																													
																						| 27 | PEI S C, DING J J Relations between Gabor transforms and fractional fourier transforms and their applications for signal processing. IEEE Trans. on Signal Processing, 2007, 55 (10): 4839- 4850. doi: 10.1109/TSP.2007.896271
 | 
																													
																						| 28 | LUO Y R, ZHANG L, RUAN H An acquisition algorithm based on FRFT for weak GNSS signals in a dynamic environment. IEEE Communication Letters, 2018, 22 (6): 1212- 1215. doi: 10.1109/LCOMM.2018.2828834
 | 
																													
																						| 29 | VANNEE D J R, COENEN A New fast GPS code-acquisition technique using FFT. Electronics Letters, 1991, 27 (2): 158- 160. doi: 10.1049/el:19910102
 | 
																													
																						| 30 | KONG S H A deterministic compressed GNSS acquisition technique. IEEE Trans. on Vehicular Technology, 2013, 62 (2): 511- 521. doi: 10.1109/TVT.2012.2220989
 |