| 1 |
BLACKMAN S S, POPOLI R. Design and analysis of modern tracking systems. Norwood: Artech House, 1999.
|
| 2 |
BAR-SHALOM Y, FORTMANN T. Tracking and data association. New York: Elsevier Science, 1988.
|
| 3 |
MAHLER R P S Multi-target Bayes filtering via first-order multi-target moments. IEEE Trans. on Aerospace and Electronic Systems, 2004, 39 (4): 1152- 1178.
|
| 4 |
VO B N, MA W K The Gaussian mixture probability hypothesis density filter. IEEE Trans. on Signal Processing, 2006, 54 (11): 4091- 4104.
doi: 10.1109/TSP.2006.881190
|
| 5 |
VO B N, SINGH S, DOUCET A Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4): 1224- 1245.
doi: 10.1109/TAES.2005.1561884
|
| 6 |
MAHLER R P S PHD filters of higher order in target number. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (4): 1523- 1543.
doi: 10.1109/TAES.2007.4441756
|
| 7 |
VO B T, VO B N, CANTONI A Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans. on Signal Processing, 2007, 55 (7): 3553- 3567.
doi: 10.1109/TSP.2007.894241
|
| 8 |
MAHLER R P S. Statistical multisource-multitarget information fusion. Norwood: Artech House, 2007.
|
| 9 |
VO B T, VO B N, CANTONI A The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. on Signal Processing, 2009, 57 (2): 409- 423.
doi: 10.1109/TSP.2008.2007924
|
| 10 |
TIAN C, PEI Y, HOU P, et al Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming. Journal of Systems Engineering and Electronics, 2020, 31 (5): 859- 870.
doi: 10.23919/JSEE.2020.000066
|
| 11 |
YANG L, VOLKAN K, JIAN G, et al Audio-visual particle flow SMC-PHD filtering for multi-speaker tracking. IEEE Trans. on Multimedia, 2020, 22 (4): 934- 948.
doi: 10.1109/TMM.2019.2937185
|
| 12 |
LIN G, GIORGIO B, LUIGI C PHD-SLAM 2.0: efficient SLAM in the presence of missdetections and clutter. IEEE Trans. on Robotics, 2021, 37 (5): 1834- 1843.
|
| 13 |
VO B T, VO B N A random finite set conjugate prior and application to multi-target tracking. Proc. of the 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2011, 431- 436.
|
| 14 |
VO B T, VO B N Labeled random finite sets and multi-object conjugate priors. IEEE Trans. on Signal Processing, 2013, 61 (13): 3460- 3475.
doi: 10.1109/TSP.2013.2259822
|
| 15 |
VO B N, VO B T, PHUNG D Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. on Signal Processing, 2014, 62 (24): 6554- 6567.
doi: 10.1109/TSP.2014.2364014
|
| 16 |
REUTER S, VO B T, VO B N, et al The labeled multi-Bernoulli filter. IEEE Trans. on Signal Processing, 2014, 62 (12): 3246- 3260.
doi: 10.1109/TSP.2014.2323064
|
| 17 |
VO B N, VO B T, HOANG H G An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans. on Signal Processing, 2017, 65 (8): 1975- 1987.
doi: 10.1109/TSP.2016.2641392
|
| 18 |
STEPHAN R, ANDREAS D, MANUEL S, et al A fast implementation of the labeled multi-Bernoulli filter using Gibbs sampling. Proc. of the International Conference on Intelligent Vehicles Symposium, 2017, 765- 772.
|
| 19 |
ABDALLAH F, GNING A, BONNIFAIT P Box particle filtering for nonlinear state estimation using interval analysis. Automatica, 2008, 44 (3): 807- 815.
doi: 10.1016/j.automatica.2007.07.024
|
| 20 |
GNING A, MIHAYLOVA L. Mixture of uniform probability density functions for non linear state estimation using interval analysis. Proc. of the 13th International Conference on Information Fusion, 2010. DOI:10.1109/ICIF.2010.5712085.
|
| 21 |
ZANG Y Q, JI H B, GAO X B, et al An ellipse extended target CBMeMBer filter using Gamma and box-particle implementation. Signal Processing, 2018, 149, 88- 102.
doi: 10.1016/j.sigpro.2018.03.002
|
| 22 |
PARVIN M, ARASH M, MIHAI B STUPEFY: set-valued box particle filtering for bluetooth low energy-based indoor localization. IEEE Signal Processing Letters, 2019, 26 (12): 1773- 1777.
doi: 10.1109/LSP.2019.2945402
|
| 23 |
CHEN N Q, JI H B, GAO Y C. Multi-sensor box particle filter with iterated measurement contraction. Proc. of the 22nd International Conference on Information Fusion, 2019. DOI: 10.23919/FUSION43075.2019.9011307.
|
| 24 |
ALLAN D F, LYUDMILA M, AMADOU G, et al A box particle filter method for tracking multiple extended objects. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (4): 1640- 1655.
doi: 10.1109/TAES.2018.2874147
|
| 25 |
CHENG X, JI H B, ZHANG Y Q, et al Box particle fast labeled multi-Bernoulli filter. Proc. of the 5th International Conference on Computer and Communications, 2019, 1377- 1382.
|
| 26 |
CHENG X, JI H B, ZHANG Y Q. Improved box particle CPHD algorithm for group target tracking. Proc. of the 8th International Conference on Control, Automation & Information Sciences, 2019. DOI: 10.1109/ICCAIS46528.2019.9074578.
|
| 27 |
RUMP S M. INTLAB-INTerval LABoratory. Dordrecht: Kluwer Academic Publishers, 1999.
|
| 28 |
SCHUHMACHER D, VO B T, VO B N A consistent metric for performance evaluation of multi-object filters. IEEE Trans. on Signal Processing, 2008, 56 (8): 3447- 3457.
doi: 10.1109/TSP.2008.920469
|
| 29 |
ZHAO X G, SONG L P Box-particle cardinality balanced multi-target multi-Bernoulli filter. Radioengineering, 2014, 23 (2): 609- 617.
|
| 30 |
CHEN N Q, JI H B, GAO Y C, et al New box particle filter with improved resampling method and extended inclusion volume criteria for multi-target tracking. Radioengineering, 2018, 27 (3): 846- 855.
doi: 10.13164/re.2018.0846
|
| 31 |
CHI L J, FENG X X Fast generalized labeled multi-Bernoulli tracking algorithm based on box particle filtering. Proc. of the 2nd International Conference on Circuits, System and Simulation, 2018, 41- 46.
|