Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 966-980.doi: 10.23919/JSEE.2022.000130
• • 上一篇
收稿日期:2021-09-14
									
				
									
				
											接受日期:2022-07-25
									
				
											出版日期:2023-08-18
									
				
											发布日期:2023-08-28
									
			
        
               		Jian’gang PENG1( ), Guang XIA2,*(
), Guang XIA2,*( ), Baoqun SUN2(
), Baoqun SUN2( ), Shaojie WANG2(
), Shaojie WANG2( )
)
			  
			
			
			
                
        
    
Received:2021-09-14
									
				
									
				
											Accepted:2022-07-25
									
				
											Online:2023-08-18
									
				
											Published:2023-08-28
									
			Contact:
					Guang XIA   
											E-mail:peng_jiangang@sina.com;xiaguang008@hfut.edu.cn;sbq1956@sina.com;wsj73@aliyun.con
												About author:Supported by:. [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 966-980.
Jian’gang PENG, Guang XIA, Baoqun SUN, Shaojie WANG. A multi-enterprise quality function deployment paradigm with unstructured decision-making in linguistic contexts[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 966-980.
 
												
												
"
| CR | DR1 | DR2 | DR3 | DR4 | DR5 | DR6 | DR7 | DR8 | 
| CR1 | Bet(me,ai) | Bet(ru,ri) | Non(ru) | Bet(ru,si) | Bet(me,ai) | Non(su) | Non(su) | Non(me) | 
| CR2 | Non(su) | Non(su) | Bet(su,ai) | Bet(su,ri) | Bet(ru,ri) | Non(su) | Non(su) | Bet(su,ri) | 
| CR3 | Bet(au,me) | Non(su) | Bet(ru,ri) | Bet(su,ri) | Bet(me,ai) | Bet(me,ai) | Bet(su,ri) | Bet(me,ai) | 
| CR4 | Ind(su) | Bet(au,si) | Bet(ru,si) | Bet(su,ri) | Ind(au) | Non(ru) | Non(ru) | Bet(ru,ri) | 
 
												
												
"
| CR | DR1 | DR2 | DR3 | DR4 | DR5 | DR6 | DR7 | DR8 | 
| CR1 | {s5,s6} | {s3,s4,s5} | {s1} | {s3,s4} | {s5,s6} | {s1,s2} | {s1,s2} | {s1,s2,s3} | 
| CR2 | {s1,s2} | {s1,s2} | {s4,s5,s6} | {s4,s5} | {s3,s4,s5} | {s1,s2} | {s1,s2} | {s4,s5} | 
| CR3 | {s2,s3} | {s1,s2} | {s3,s4,s5} | {s4,s5} | {s5,s6} | {s5,s6} | {s4,s5} | {s5,s6} | 
| CR4 | {s2} | {s2,s3,s4} | {s3,s4} | {s4,s5} | {s2} | {s1} | {s1} | {s3,s4,s5} | 
 
												
												
"
|  | DR1 | DR2 | DR3 | DR4 | DR5 | DR6 | DR7 | DR8 | 
|  | 0.2348 | 0.1693 | 0.0428 | 0.1490 | 0.2348 | 0.0428 | 0.0428 | 0.0817 | 
| 0.0522 | 0.0358 | 0.1778 | 0.1606 | 0.1417 | 0.0358 | 0.0358 | 0.1606 | |
| 0.1100 | 0.0648 | 0.1759 | 0.1994 | 0.2439 | 0.2439 | 0.1994 | 0.2439 | |
| 0.0397 | 0.0584 | 0.0690 | 0.0890 | 0.0397 | 0.0198 | 0.0198 | 0.0785 | |
|  | 0.2353 | 0.1711 | 0.0428 | 0.1497 | 0.2353 | 0.0428 | 0.0428 | 0.0856 | 
| 0.0537 | 0.0358 | 0.1790 | 0.1611 | 0.1432 | 0.0358 | 0.0358 | 0.1611 | |
| 0.1111 | 0.0667 | 0.1778 | 0.2000 | 0.2444 | 0.2444 | 0.2000 | 0.2444 | |
| 0.0397 | 0.0595 | 0.0694 | 0.0892 | 0.0397 | 0.0198 | 0.0198 | 0.0793 | |
|  | 0.2363 | 0.1746 | 0.0428 | 0.1512 | 0.2363 | 0.0428 | 0.0428 | 0.0924 | 
| 0.0566 | 0.0358 | 0.1814 | 0.1621 | 0.1462 | 0.0358 | 0.0358 | 0.1621 | |
| 0.1133 | 0.0703 | 0.1814 | 0.2012 | 0.2454 | 0.2454 | 0.2012 | 0.2454 | |
| 0.0397 | 0.0617 | 0.0701 | 0.0898 | 0.0397 | 0.0198 | 0.0198 | 0.0810 | |
|  | 0.2372 | 0.1780 | 0.0428 | 0.1527 | 0.2372 | 0.0428 | 0.0428 | 0.0979 | 
| 0.0591 | 0.0358 | 0.1837 | 0.1631 | 0.1490 | 0.0358 | 0.0358 | 0.1631 | |
| 0.1154 | 0.0734 | 0.1849 | 0.2024 | 0.2464 | 0.2464 | 0.2024 | 0.2464 | |
| 0.0397 | 0.0636 | 0.0708 | 0.0903 | 0.0397 | 0.0198 | 0.0198 | 0.0825 | |
|  | 0.2382 | 0.1810 | 0.0428 | 0.1541 | 0.2382 | 0.0428 | 0.0428 | 0.1023 | 
| 0.0611 | 0.0358 | 0.1858 | 0.1640 | 0.1515 | 0.0358 | 0.0358 | 0.1640 | |
| 0.1173 | 0.0759 | 0.1881 | 0.2036 | 0.2474 | 0.2474 | 0.2036 | 0.2474 | |
| 0.0397 | 0.0653 | 0.0714 | 0.0908 | 0.0397 | 0.0198 | 0.0198 | 0.0839 | |
|  | 0.2391 | 0.1838 | 0.0428 | 0.1554 | 0.2391 | 0.0428 | 0.0428 | 0.1057 | 
| 0.0627 | 0.0358 | 0.1879 | 0.1649 | 0.1538 | 0.0358 | 0.0358 | 0.1649 | |
| 0.1190 | 0.0779 | 0.1909 | 0.2047 | 0.2484 | 0.2484 | 0.2047 | 0.2484 | |
| 0.0397 | 0.0668 | 0.0721 | 0.0913 | 0.0397 | 0.0198 | 0.0198 | 0.0852 | |
|  | 0.2400 | 0.1863 | 0.0428 | 0.1567 | 0.2400 | 0.0428 | 0.0428 | 0.1084 | 
| 0.0640 | 0.0358 | 0.1897 | 0.1658 | 0.1559 | 0.0358 | 0.0358 | 0.1658 | |
| 0.1205 | 0.0794 | 0.1935 | 0.2058 | 0.2493 | 0.2493 | 0.2058 | 0.2493 | |
| 0.0397 | 0.0680 | 0.0726 | 0.0918 | 0.0397 | 0.0198 | 0.0198 | 0.0863 | |
|  |  |  |  |  |  |  |  |  | 
|  | 0.2431 | 0.1937 | 0.0428 | 0.1605 | 0.2431 | 0.0428 | 0.0428 | 0.1152 | 
| 0.0668 | 0.0358 | 0.1957 | 0.1688 | 0.1621 | 0.0358 | 0.0358 | 0.1688 | |
| 0.1246 | 0.0829 | 0.2012 | 0.2095 | 0.2526 | 0.2526 | 0.2095 | 0.2526 | |
| 0.0397 | 0.0715 | 0.0744 | 0.0935 | 0.0397 | 0.0198 | 0.0198 | 0.0898 | 
 
												
												
"
|  |  |  |  |  |  |  |  |  | 
|  | 0.7817 | 0.8359 | 0.7672 | 0.7010 | 0.6700 | 0.8288 | 0.8511 | 0.7176 | 
|  | 0.7801 | 0.8335 | 0.7655 | 0.7000 | 0.6687 | 0.8286 | 0.8508 | 0.7148 | 
|  | 0.7771 | 0.8288 | 0.7621 | 0.6978 | 0.6662 | 0.8281 | 0.8502 | 0.7095 | 
|  | 0.7743 | 0.8246 | 0.7589 | 0.6957 | 0.6639 | 0.8276 | 0.8496 | 0.7050 | 
|  | 0.7719 | 0.8210 | 0.7559 | 0.6937 | 0.6616 | 0.8271 | 0.8490 | 0.7012 | 
|  | 0.7698 | 0.8179 | 0.7532 | 0.6918 | 0.6595 | 0.8266 | 0.8484 | 0.6979 | 
|  | 0.7680 | 0.8152 | 0.7507 | 0.6899 | 0.6576 | 0.8262 | 0.8479 | 0.6951 | 
|  |  |  |  |  |  |  |  |  | 
|  | 0.7629 | 0.8080 | 0.7429 | 0.6839 | 0.6513 | 0.8245 | 0.8461 | 0.6869 | 
 
												
												
"
| λ |  |  |  |  |  |  |  |  | 
| λ = 0.5 | 0.1182 | 0.0889 | 0.1260 | 0.1619 | 0.1787 | 0.0927 | 0.0806 | 0.1529 | 
| λ = 1 | 0.1183 | 0.0896 | 0.1262 | 0.1615 | 0.1783 | 0.0923 | 0.0803 | 0.1535 | 
| λ = 2 | 0.1186 | 0.0911 | 0.1265 | 0.1607 | 0.1775 | 0.0914 | 0.0797 | 0.1545 | 
| λ = 3 | 0.1188 | 0.0923 | 0.1269 | 0.1601 | 0.1769 | 0.0907 | 0.0792 | 0.1552 | 
| λ = 4 | 0.1189 | 0.0933 | 0.1272 | 0.1596 | 0.1764 | 0.0901 | 0.0787 | 0.1557 | 
| λ = 5 | 0.1190 | 0.0941 | 0.1276 | 0.1593 | 0.1760 | 0.0896 | 0.0783 | 0.1561 | 
| λ = 6 | 0.1190 | 0.0948 | 0.1279 | 0.1590 | 0.1756 | 0.0892 | 0.0780 | 0.1564 | 
|  |  |  |  |  |  |  |  |  | 
| λ = 10 | 0.1189 | 0.0963 | 0.1289 | 0.1586 | 0.1749 | 0.0880 | 0.0772 | 0.1571 | 
 
												
												
"
| λ | DR1 | DR2 | DR3 | DR4 | DR5 | DR6 | DR7 | DR8 | 
| λ = 0.5 | 5 | 7 | 4 | 2 | 1 | 6 | 8 | 3 | 
| λ = 1 | 5 | 7 | 4 | 2 | 1 | 6 | 8 | 3 | 
| λ = 2 | 5 | 7 | 4 | 2 | 1 | 6 | 8 | 3 | 
| λ = 3 | 5 | 6 | 4 | 2 | 1 | 7 | 8 | 3 | 
| λ = 4 | 5 | 6 | 4 | 2 | 1 | 7 | 8 | 3 | 
| λ = 5 | 5 | 6 | 4 | 2 | 1 | 7 | 8 | 3 | 
| λ = 6 | 5 | 6 | 4 | 2 | 1 | 7 | 8 | 3 | 
|  |  |  |  |  |  |  |  |  | 
| λ = 10 | 5 | 6 | 4 | 2 | 1 | 7 | 8 | 3 | 
| 1 | LI Z L, GAO Q S, ZHANG D L Product design on the basis of fuzzy quality function deployment. Journal of Systems Engineering and Electronics, 2008, 19 (6): 1165- 1170. doi: 10.1016/S1004-4132(08)60214-5 | 
| 2 | RAMANATHAN R, JIANG Y F Incorporating cost and environmental factors in quality function deployment using data envelopment analysis. Omega, 2009, 37 (3): 711- 723. doi: 10.1016/j.omega.2007.12.003 | 
| 3 | WANG F, LI H, LIU A J, et al. Hybrid customer requirements rating method for customer-oriented product design using QFD. Journal of Systems Engineering and Electronics, 2015, 26 (3): 533- 543. | 
| 4 | MA H Z, CHU X N, LI Y P An integrated approach to identify function components for product redesign based on analysis of customer requirements and failure risk. Journal of Intelligent & Fuzzy Systems, 2019, 36 (2): 1743- 1757. | 
| 5 | ZHANG L, LIU Y, WANG R C, et al Efficient privacy-preserving classification construction model with differential privacy technology. Journal of Systems Engineering and Electronics, 2017, 28 (1): 170- 178. | 
| 6 | HUO Y, QIU P, ZHAI J Y Maturity assessment model for aircraft collaborative design software solution. Journal of Systems Engineering and Electronics, 2018, 29 (6): 1228- 1236. doi: 10.21629/JSEE.2018.06.10 | 
| 7 | MICHAEL L D, JOHNSON D, RENAGHAN L M Adapting the QFD approach to extended service transactions. Production and Operations Management, 1999, 8 (3): 301- 317. | 
| 8 | ERTAY T, BUYUKOZKAN G, KAHRAMAN C, et al Quality function deployment implementation based on analytic network process with linguistic data: an application in automotive industry. Journal of Intelligent & Fuzzy Systems, 2005, 16 (3): 221- 232. | 
| 9 | CHAN L K, WU M L A systematic approach to quality function deployment with a full illustrative example. Omega, 2005, 33 (2): 119- 139. doi: 10.1016/j.omega.2004.03.010 | 
| 10 | DJEKIC I, VUNDUK J, TOMASEVIC I, et al Application of quality function deployment on shelf-life analysis of Agaricus bisporus Portobello. LWT—Food Science and Technology, 2017, 78, 82- 89. doi: 10.1016/j.lwt.2016.12.036 | 
| 11 | OSIRO L, LIMA-JUNIOR F R L, CARPINETTI C R A group decision model based on quality function deployment and hesitant fuzzy for selecting supply chain sustainability metrics. Journal of Cleaner Production, 2018, 183 (5): 964- 978. | 
| 12 | KIM K J, MOSKOWITZ H, DHINGRA A, et al Fuzzy multicriteria models for quality function deployment. European Journal of Operational Research, 2000, 121 (3): 504- 518. doi: 10.1016/S0377-2217(99)00048-X | 
| 13 | SEKER, S, AYDIN, N Fermatean fuzzy based quality function deployment methodology for designing sustainable mobility hub center. Applied Soft Computing, 2023, 134, 110001. | 
| 14 | MIKHAILOV L Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega, 2002, 30 (5): 393- 401. doi: 10.1016/S0305-0483(02)00052-X | 
| 15 | WANG C H Integrating a novel intuitive fuzzy method with quality function deployment for product design: case study on touch panels. Journal of Intelligent & Fuzzy Systems, 2019, 37 (2): 2819- 2833. | 
| 16 | KARSAK E E Fuzzy multiple objective decision-making approach to prioritize design requirements in quality function deployment. International Journal of Production Research, 2004, 42 (18): 3957- 3974. doi: 10.1080/00207540410001703998 | 
| 17 | BAIDYA R, DEY P K, GHOSH S K, et al Strategic maintenance technique selection using combined quality function deployment, the analytic hierarchy process and the benefit of doubt approach. International Journal of Advanced Manufacturing Technology, 2018, 94 (1/4): 31- 44. doi: 10.1007/s00170-016-9540-1 | 
| 18 | DURSUN M, KARSAK E E A QFD-based fuzzy MCDM approach for supplier selection. Applied Mathematical Modelling, 2013, 37 (8): 5864- 5875. doi: 10.1016/j.apm.2012.11.014 | 
| 19 | GHERARDINI F, RENZI C, LEALI F A systematic user-centred framework for engineering product design in small- and medium-sized enterprises (SMEs). International Journal of Advanced Manufacturing Technology, 2017, 91 (5/8): 1723- 1746. | 
| 20 | KAMVYSI K, GOTZAMANI K, ANDRONIKIDIS A, et al Capturing and prioritizing students’ requirements for course design by embedding fuzzy-AHP and linear programming in QFD. European Journal of Operational Research, 2014, 237 (3): 1083- 1094. doi: 10.1016/j.ejor.2014.02.042 | 
| 21 | FUNG R Y, CHEN Y Z, TANG J F Estimating the functional relationships for quality function deployment under uncertainties. Fuzzy Sets and Systems, 2006, 157 (1): 98- 120. doi: 10.1016/j.fss.2005.05.032 | 
| 22 | YANG L, PAN G H, HOU G S Behavior evolution of key participants in digital transformation of SMEs. Science and Technology Management Research, 2022, 42 (6): 112- 123. | 
| 23 | MOHAJERI B. Paradigm shift from current manufacturing to social manufacturing. Espoo, Finland: Aalto University: 2014. | 
| 24 | LENG J W, JIANG P Y A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowledge-Based Systems, 2016, 100 (5): 188- 199. | 
| 25 | LENG J W, JIANG P Y Mining and matching relationships from interaction contexts in a social manufacturing paradigm. IEEE Trans. on Systems, Man and Cybernetics, 2017, 47 (2): 276- 288. | 
| 26 | MORENTE-MOLINERA J A, WU X, MORFEG A, et al A novel multi-criteria group decision-making method for heterogeneous and dynamic contexts using multi-granular fuzzy linguistic modelling and consensus measures. Information Fusion, 2020, 53, 240- 250. doi: 10.1016/j.inffus.2019.06.028 | 
| 27 | JIANG K X, ZHANG Q, YAN M T Multi-attribute group decision making method under 2-dimension uncertain linguistic variables. Journal of Systems Engineering and Electronics, 2020, 31 (6): 1254- 1261. doi: 10.23919/JSEE.2020.000096 | 
| 28 | AKERKAR R, SAJJA P. Knowledge-based systems. Sudbury: Jones & Bartlett Publishers, 2010. | 
| 29 | ZHAI L Y, KHOO L P, ZHONG Z W A dominance-based rough set approach to Kansei Engineering in product development. Expert Systems with Applications, 2009, 36 (1): 393- 402. doi: 10.1016/j.eswa.2007.09.041 | 
| 30 | ZADEH L A Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 1997, 90 (2): 111- 127. doi: 10.1016/S0165-0114(97)00077-8 | 
| 31 | QIAN G, WANG H, FENG X Generalized hesitant fuzzy sets and their application in decision support system. Knowledge-Based Systems, 2013, 37 (1): 357- 365. doi: 10.1016/j.knosys.2012.08.019 | 
| 32 | ZHANG Z, GAO J L, GAO Y, et al Two-sided matching decision making with multi-granular hesitant fuzzy linguistic term sets and incomplete criteria weight information. Expert Systems with Applications, 2021, 4, 114311. | 
| 33 | FARHADINIA B Multiple criteria decision-making methods with completely unknown weights in hesitant fuzzy linguistic term setting. Knowledge-Based Systems, 2016, 93 (2): 135- 144. | 
| 34 | WANG J Q, WANG J, CHEN Q H, et al An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets. Information Sciences, 2014, 280 (10): 338- 351. | 
| 35 | LUO X, LI W M, WANG X Z, et al Fuzzy interval linguistic sets with applications in multi-attribute group decision making. Journal of Systems Engineering and Electronics, 2018, 29 (6): 1237- 1250. doi: 10.21629/JSEE.2018.06.11 | 
| 36 | GRIFFIN A, HAUSER J R Patterns of communication among marketing, engineering and manufacturing—a comparison between two new product teams. Management Science, 1992, 38 (3): 360- 373. doi: 10.1287/mnsc.38.3.360 | 
| 37 | VAIRAKTARAKIS G L Optimization tools for design and marketing of new/improved products using the house of quality. Journal of Operations Management, 1999, 17 (6): 645- 663. doi: 10.1016/S0272-6963(99)00020-0 | 
| 38 | EROL O, SAUSER B J, MANSOURI M A framework for investigation into extended enterprise resilience. Enterprise Information Systems, 2010, 4 (2): 111- 136. doi: 10.1080/17517570903474304 | 
| 39 | WANG J W, GAO F, IP W H Measurement of resilience and its application to enterprise information systems. Enterprise Information Systems, 2010, 4 (2): 215- 223. doi: 10.1080/17517571003754561 | 
| 40 | ANTUNES P BPM and exception handling: focus on organizational resilience. IEEE Trans. on Systems, Man and Cybernetics Part C, 2011, 41 (3): 383- 392. doi: 10.1109/TSMCC.2010.2062504 | 
| 41 | ZADEH L A Fuzzy logic= computing with words. IEEE Trans. on Fuzzy Systems, 1996, 4 (2): 103- 111. doi: 10.1109/91.493904 | 
| 42 | RICKARD J T, AISBETT J, MORGENTHALER D G, et al Modeling of complex system phenomena via computing with words in fuzzy cognitive maps. IEEE Trans. on Fuzzy Systems, 2021, 28 (12): 3122- 3132. | 
| 43 | MENDEL J M Type-2 fuzzy sets as well as computing with words. IEEE Computational Intelligence Magazine, 2019, 14 (1): 82- 95. doi: 10.1109/MCI.2018.2881646 | 
| 44 | HERRERA F, ALONSO S, CHICLANA F, et al Computing with words in decision making: foundations, trends and prospects. Fuzzy Optimization and Decision Making, 2009, 8 (4): 337- 364. doi: 10.1007/s10700-009-9065-2 | 
| 45 | HERRERA F, HERRERA-VIEDMA E Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets and Systems, 2000, 115 (1): 67- 82. doi: 10.1016/S0165-0114(99)00024-X | 
| 46 | ZADEH L A The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 1975, 8 (3): 199- 249. doi: 10.1016/0020-0255(75)90036-5 | 
| 47 | ZADEH L A The concept of a linguistic variable and its application to approximate reasoning-II. Information Sciences, 1975, 8 (4): 301- 357. doi: 10.1016/0020-0255(75)90046-8 | 
| 48 | ZADEH L A The concept of a linguistic variable and its application to approximate reasoning-III. Information Sciences, 1975, 9 (1): 43- 80. doi: 10.1016/0020-0255(75)90017-1 | 
| 49 | RODRIGUEZ R M, MARTINEZ L, HERRERA F Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. on Fuzzy Systems, 2012, 20 (1): 109- 119. doi: 10.1109/TFUZZ.2011.2170076 | 
| 50 | WANG X T, XIONG W An integrated linguistic-based group decision-making approach for quality function deployment. Expert Systems with Applications, 2011, 38 (12): 14428- 14438. doi: 10.1016/j.eswa.2011.04.103 | 
| 51 | XU Z S Deviation measures of linguistic preference relations in group decision making. Omega, 2005, 33 (3): 249- 254. doi: 10.1016/j.omega.2004.04.008 | 
| 52 | TORRA V Hesitant fuzzy sets. International Journal of Intelligent Systems, 2010, 25 (6): 529- 539. | 
| 53 | CHEN N, XU Z S, XIA M Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Applied Mathematical Modelling, 2013, 37 (4): 2197- 2211. doi: 10.1016/j.apm.2012.04.031 | 
| 54 | ZHU B, XU Z S Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Trans. on Fuzzy Systems, 2014, 22 (1): 35- 45. doi: 10.1109/TFUZZ.2013.2245136 | 
| 55 | LIAO H C, XU Z S, ZENG X J Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Information Sciences, 2014, 271 (7): 125- 142. | 
| 56 | HERRERA F, HERRERA-VIEDMA E, VERDEGAY J L A sequential selection process in group decision making with a linguistic assessment approach. Information Sciences, 1995, 85 (4): 223- 239. doi: 10.1016/0020-0255(95)00025-K | 
| 57 | RODRIGUEZ R M, MARTINEZ L, HERRERA F A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Information Sciences, 2013, 241 (5): 28- 42. | 
| 58 | PRIES-HEJE J, BASKERVILLE R The design theory nexus. MIS Quarterly, 2008, 32 (4): 731- 755. doi: 10.2307/25148870 | 
| 59 | GROOP J, KETOKIVI M, GUPTA M, et al Improving home care: knowledge creation through engagement and design. Journal of Operations Management, 2017, 53 (56): 9- 22. | 
| 60 | MACHER J T Technological development and the boundaries of the firm: a knowledge-based examination in semiconductor manufacturing. Management Science, 2006, 52 (6): 826- 843. doi: 10.1287/mnsc.1060.0511 | 
| 61 | MACKENZIE A, PIDD M, ROOKSBY J, et al Wisdom, decision support and paradigms of decision making. European Journal of Operational Research, 2006, 170 (1): 156- 171. doi: 10.1016/j.ejor.2004.07.041 | 
| 62 | PENG J G, XIA G, SUN B Q, et al Systematical decision-making approach for quality function deployment based on uncertain linguistic term sets. International Journal of Production Research, 2018, 56 (18): 6183- 6200. doi: 10.1080/00207543.2018.1478462 | 
| 63 | TSODYKS M, GILBERT C Neural networks and perceptual learning. Nature, 2004, 431 (7010): 775. doi: 10.1038/nature03013 | 
| 64 | WANG L, ZENG Y, CHEN T Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Systems with Applications, 2015, 42 (2): 855- 863. doi: 10.1016/j.eswa.2014.08.018 | 
| No related articles found! | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||