Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (5): 1231-1244.doi: 10.23919/JSEE.2024.000095
收稿日期:2022-12-26
									
				
									
				
									
				
											出版日期:2024-10-18
									
				
											发布日期:2024-11-06
									
			
        
               		Xuan LI1(
), Jiang JIANG1(
), Jianbin SUN1(
), Haiyue YU1(
), Leilei CHANG1,2,*(
)
			  
			
			
			
                
        
    
Received:2022-12-26
									
				
									
				
									
				
											Online:2024-10-18
									
				
											Published:2024-11-06
									
			Contact:
					Leilei CHANG   
											E-mail:xlhunan@126.com;jiangjiangnudt@163.com;sunjianbin@nudt.edu.cn;haiyue_nudt@163.com;leileichang@hotmail.com
												About author:Supported by:. [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1231-1244.
Xuan LI, Jiang JIANG, Jianbin SUN, Haiyue YU, Leilei CHANG. Accountable capability improvement based on interpretable capability evaluation using belief rule base[J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1231-1244.
"
| Number | Sub-capability | Representative index | Type | Range | 
| 1 | Surveillance (S) | Maximum surveillance distance/km | Benefit | [0,  | 
| 2 | Positioning (P) | Position precision coefficient/km | Cost | [0.1 4] | 
| 3 | Identification (I) | Target identification belief level | Benefit | [0, 1] | 
| 4 | Tracking (T) | Target track filtering precision | Cost | [0, 2.5] | 
| 5 | Anti-jamming (AJ) | Disturbance suppression ration | Benefit | [0, 1] | 
"
| Number | θ | IF (sub-capabilities) | THEN (overall capability)/% | Comment | |||||||
| S | P | I | T | AJ | High | Medium | Low | ||||
| 1 | 1 | 0 | 4 | 0 | 2.5 | 0 | 0 | 0 | 100 | Least optimal condition | |
| 2 | 1 | 0.1 | 1 | 0 | 1 | 100 | 0 | 0 | Optimal condition | ||
| 3 | 1 | 1.5 | 0.6 | 1.2 | 0.8 | 70 | 30 | 0 | Under influence | ||
| 4 | 1 | 3 | 0.3 | 2 | 0.4 | 40 | 40 | 20 | Under influence | ||
| 5 | 1 | 2000 | 2.5 | 0.4 | 1.8 | 0.5 | 50 | 30 | 20 | Under influence | |
| 6 | 1 | 2 | 0.5 | 1.6 | 0.6 | 50 | 40 | 10 | Under influence | ||
"
| Scheme number | Key sub-capability | Overall capability/% | Cost | |||||
| Surveillance | Positioning | Identification | High | Medium | Low | |||
| 1 | 1.80 | 0.50 | 61.05 | 25.44 | 13.51 | 52 | ||
| 2 | 1.80 | 0.60 | 67.17 | 24.99 | 7.84 | 112 | ||
| 3 | 1.50 | 0.60 | 69.70 | 25.46 | 4.84 | 142 | ||
| 4 | 1.50 | 0.70 | 71.61 | 23.09 | 5.30 | 202 | ||
| 5 | 0.80 | 0.70 | 75.83 | 18.38 | 5.79 | 322 | ||
| 6 | 0.80 | 0.80 | 78.42 | 15.74 | 5.84 | 382 | ||
| 7 | 0.80 | 0.90 | 80.67 | 13.57 | 5.76 | 392 | ||
| 8 | 0.80 | 0.95 | 81.84 | 12.52 | 5.64 | 397 | ||
"
| Capability | Status of sub-capabilities | Overall capability (“high”)/% | Cost | 
| Present capability (before  capability improvement)  | S=3 600 km; P=2.20 km; I=0.38; T=2.10; AJ=0.70  | 59.20 | NA | 
| Overall capability improved by initial BRB  | S=3 600 km; P=2.20 km; I=0.38; T=2.10; AJ=0.70  | 81.84 | 397 | 
| Overall capability improved  by optimized BRB  | S=3 600 km; P=2.20 km; I=0.38; T=2.10 AJ=0.70  | 80.82 | 295 | 
| S=3 600 km; P=2.20 km; I=0.38; T=2.10 AJ=0.70  | 81.34 | 370 | 
"
| Approach | Parameter setting | MAE | Analytical step | Adoptable | 
| Initial BRB | Six rules, three scales in the capability evaluation results. | 3.44e-03 | Yes | Yes | 
| Optimized BRB | 6.25e-03 | |||
| BPNN | The number of layers is 2, the number of neurons is 10,  the epoch is  | 3.23e-03 | No | No | 
| SVM | Kernal function is RBF, C=0.2 | 1.41e-02 | No | No | 
| 1 | CORREIA J Military capabilities and the strategic planning conundrum. Security & Defence Quarterly, 2019, 24 (2): 21- 50. | 
| 2 | SMEETS M The strategic promise of offensive cyber operations. Strategic Studies Quarterly, 2018, 12 (3): 90- 113. | 
| 3 |  
											 PIOTROWSKY L, JAESCHKE T, KUEPPERS S, et al Enabling high accuracy distance measurements with FMCW radar sensors. IEEE Trans. on Microwave Theory and Techniques, 2019, 67 (12): 5360- 5371. 
											 												 doi: 10.1109/TMTT.2019.2930504  | 
										
| 4 | U. S. Department of Defense. FY 2022 Defense Budget. https://www.defense.gov/Spotlights/FY2022-Defense-Budget/. | 
| 5 | LIU R X, WU L, XIE Z G, et al Auxiliary situation analysis for air defense system based on generative adversarial network. Systems Engineering and Electronics, 2022, 44 (8): 2522- 2529. | 
| 6 | QIAN L W, XU X Q, DOU Y J, et al System capability requirements recommendation method based on RIMER method. Systems Engineering and Electronics, 2022, 44 (12): 3719- 3727. | 
| 7 |  
											 ZHAO L D, WANG B, HE J, et al SE-DEA-SVM evaluation method of ECM operational disposition scheme. Journal of Systems Engineering and Electronics, 2022, 33 (3): 600- 611. 
											 												 doi: 10.23919/JSEE.2022.000058  | 
										
| 8 |  
											 BLANKENSHIP B, LIN-GREENBERG E Trivial tripwires?: military capabilities and alliance reassurance. Security Studies, 2022, 31 (1): 92- 117. 
											 												 doi: 10.1080/09636412.2022.2038662  | 
										
| 9 |  
											 WALLIS J, POWLES A Burden-sharing: the US, Australia and New Zealand alliances in the Pacific islands. International Affairs, 2021, 97 (4): 1045- 1065. 
											 												 doi: 10.1093/ia/iiab081  | 
										
| 10 |  
											 JIANG J, CHANG L L, ZHANG L M, et al Retraceable and online multi-objective active optimal control using belief rule base. Knowledge-Based Systems, 2021, 233, 107553. 
											 												 doi: 10.1016/j.knosys.2021.107553  | 
										
| 11 |  
											 CHANG L L, JIANG J, SUN J B, et al Disjunctive belief rule base spreading for threat level assessment with heterogeneous, insufficient, and missing information. Information Sciences, 2019, 476, 106- 131. 
											 												 doi: 10.1016/j.ins.2018.10.004  | 
										
| 12 |  
											 CHANG L L, FU C, WU Z J, et al A data-driven method using BRB with data reliability and expert knowledge for complex systems modeling. IEEE Trans. on Systems, Man, Cybernetics: Systems, 2022, 52 (11): 6729- 6743. 
											 												 doi: 10.1109/TSMC.2021.3095524  | 
										
| 13 |  
											 CHANG L L, ZHANG L M, FU C, et al Transparent digital twin for output control using the belief rule base. IEEE Trans. on Cybernetics, 2022, 52 (10): 10364- 10378. 
											 												 doi: 10.1109/TCYB.2021.3063285  | 
										
| 14 |  
											 KAUSHAL M, KHEHRA B S, SHARMA A Soft computing based object detection and tracking approaches: state-of-the-art survey. Applied Soft Computing, 2018, 70, 423- 464. 
											 												 doi: 10.1016/j.asoc.2018.05.023  | 
										
| 15 | WHITLEY D, RANA S, DZUBERA J, et al Evaluating evolutionary algorithms. Artificial Intelligence, 1996, 85 (1/2): 245- 276. | 
| 16 | KRAMER O, KRAMER O. Genetic algorithms. Cham: Springer International Publishing, 2017. | 
| 17 |  
											 TANG M N, CHEN S J, ZHENG X H, et al Sensors deployment optimization in multi-dimensional space based on improved particle swarm optimization algorithm. Systems Engineering and Electronics, 2018, 29 (5): 969- 982. 
											 												 doi: 10.21629/JSEE.2018.05.09  | 
										
| 18 |  
											 WANG L S B, WANG X S, XU Z H Principle and approach to polarization modulation for radar super-resolution. Scientia Sinica Informationis, 2023, 53, 993- 1007. 
											 												 doi: 10.1360/SSI-2022-0141  | 
										
| 19 |  
											 AUBRY A, MAIO A D, ROSAMILIA M Reconfigurable intelligent surfaces for N-LOS radar surveillance. IEEE Trans. on Vehicular Technology, 2021, 70 (10): 10735- 10749. 
											 												 doi: 10.1109/TVT.2021.3102315  | 
										
| 20 | U. S. Department of Defense. The DoDAF architecture framework version 2.02. https://dodcio.defense.gov/Library/DoD-Architecture-Framework/. | 
| 21 |  
											 ZENG L H, YAO F Q, ZHANG J Z, et al Dynamic spectrum access based on prior knowledge enabled reinforcement learning with double actions in complex electromagnetic environment. China Communications, 2022, 19 (7): 13- 24. 
											 												 doi: 10.23919/JCC.2022.07.002  | 
										
| 22 |  
											 GUO S, AKHTAR S, MELLA A A method for radar model identification using time-domain transient signals. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (5): 3132- 3149. 
											 												 doi: 10.1109/TAES.2021.3074129  | 
										
| 23 |  
											 YAN J K, JIAO H, PU W Q, et al Radar sensor network resource allocation for fused target tracking: a brief review. Information Fusion, 2022, 86/87, 104- 115. 
											 												 doi: 10.1016/j.inffus.2022.06.009  | 
										
| 24 |  
											 LI K, JIU B, PU W Q, et al Neural fictitious self-play for radar anti-jamming dynamic game with imperfect information. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5533- 5547. 
											 												 doi: 10.1109/TAES.2022.3175186  | 
										
| 25 |  
											 DENG W, ZHANG X X, ZHOU Y Q, et al An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 2022, 585, 441- 453. 
											 												 doi: 10.1016/j.ins.2021.11.052  | 
										
| 26 | DING D R, WANG Z D, HAN Q L, et al Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans. on Cybernetics, 2018, 49 (6): 2372- 2384. | 
| 27 | OUCHEN S, STEINHART H, BENBOUZID M, et al Robust DPC-SVM control strategy for shunt active power filter based on H∞ regulators. International Journal of Electrical Power & Energy Systems, 2020, 117, 105699. | 
| No related articles found! | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||