Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (5): 1326-1336.doi: 10.23919/JSEE.2024.000105
• • 上一篇
收稿日期:2022-11-07
									
				
									
				
											接受日期:2023-11-24
									
				
											出版日期:2024-10-18
									
				
											发布日期:2024-11-06
									
			
        
               		Yalin CHEN1,2(
), Xiangyu KONG1,*(
), Jiayu LUO1(
)
			  
			
			
			
                
        
    
Received:2022-11-07
									
				
									
				
											Accepted:2023-11-24
									
				
											Online:2024-10-18
									
				
											Published:2024-11-06
									
			Contact:
					Xiangyu KONG   
											E-mail:cyl2318959445@163.com;xiangyukong01@163.com;540629964@qq.com
												About author:Supported by:. [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1326-1336.
Yalin CHEN, Xiangyu KONG, Jiayu LUO. A process monitoring method for autoregressive-dynamic inner total latent structure projection[J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1326-1336.
"
| Subspace | Dimension | Description | 
| A predictable mass-dependent dynamic subspace in X-space | ||
| Irrelevant subspaces in the predictable dynamic space of X that do not contribute to the predicted output | ||
| A noisy subspace in the predictable dynamic space of X | ||
| Unpredictable subspaces in X space | 
"
| Fault | DMPLS | DTPLS | AR-DiTPLS | ||||||||
| 1 | 84.77 | 98.63 | 99.00 | 99.87 | 99.25 | 99.00 | 34.96 | 99.75 | |||
| 2 | 98.25 | 96.75 | 97.87 | 98.75 | 98.38 | 92.1 | 89.47 | 98.62 | |||
| 5 | 99.50 | 60.80 | 15.41 | 35.97 | 13.50 | 29.57 | 14.41 | 24.28 | |||
| 6 | 99.75 | 99.63 | 97.37 | 99.62 | 99.38 | 99.62 | 97.74 | 100.0 | |||
| 7 | 56.18 | 35.33 | 28.20 | 100.0 | 100.0 | 39.34 | 22.68 | 100.0 | |||
| 8 | 72.78 | 92.01 | 72.18 | 98.12 | 91.25 | 83.08 | 67.42 | 98.00 | |||
| 10 | 80.27 | 26.97 | 10.78 | 31.08 | 08.00 | 36.21 | 07.27 | 31.91 | |||
| 12 | 93.38 | 95.38 | 71.55 | 98.62 | 84.38 | 88.97 | 67.92 | 98.37 | |||
| 13 | 83.65 | 90.89 | 88.47 | 95.99 | 94.75 | 91.97 | 81.95 | 94.74 | |||
"
| Fault | DMPLS | DTPLS | AR-DiTPLS | ||||||||
| 3 | 4.24 | 2.50 | 9.02 | 17.04 | 4.00 | 3.50 | 1.88 | 1.75 | |||
| 4 | 11.36 | 2.12 | 6.77 | 69.67 | 87.88 | 2.38 | 100.0 | 88.74 | |||
| 9 | 4.12 | 2.00 | 9.40 | 14.91 | 5.63 | 1.38 | 2.38 | 1.63 | |||
| 11 | 10.61 | 10.24 | 12.16 | 64.66 | 64.75 | 1.63 | 64.41 | 63.08 | |||
| 15 | 2.50 | 4.87 | 10.03 | 16.04 | 5.75 | 3.38 | 2.50 | 5.26 | |||
"
| Variable | Location | Specific description | 
| PT408 | Differential pressure at the top | |
| FT407 | Top traffic | |
| LI405 | Top of the stage separator | |
| FT406 | Output of top separator | |
| LI504 | Gas and liquid three-phase separator | |
| VC501 | VC501 valve location | |
| VC302 | VC302 valve location | |
| PO1 | The size of the pump current | |
| FT407 | Highest density upper riser | 
| 1 | YAO L, SHAO W M, GE Z Q, Hierarchical quality monitoring for large-scale industrial plants with big process data. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(8): 3330−3341. | 
| 2 | KONG X Y, YANG Z Y, LUO J Y, et al. Extraction of reduced fault subspace based on KDICA and its application in fault diagnosis. IEEE Trans. on Instrumentation and Measurement, 2022, 71: 1−12. | 
| 3 |  
											 ZHU Q Q Dynamic autoregressive partial least squares for supervised modeling. IFAC-PapersOnLine, 2021, 54 (7): 234- 239. 
											 												 doi: 10.1016/j.ifacol.2021.08.364  | 
										
| 4 | XU B, ZHU Q Q Online quality-relevant monitoring with dynamic weighted partial least squares. Industrial & Engineering Chemistry Research, 2020, 59 (48): 21124- 21132. | 
| 5 |  
											 HU C H, LUO J Y, KONG X Y, et al Novel fault subspace extraction methods for the reconstruction-based fault diagnosis. Journal of Process Control, 2021, 105, 129- 140. 
											 												 doi: 10.1016/j.jprocont.2021.07.008  | 
										
| 6 |  
											 CHEN C, WANG Y J, ZHANG Y, et al Indoor positioning algorithm based on nonlinear PLS integrated with RVM. IEEE Sensors Journal, 2018, 18 (2): 660- 668. 
											 												 doi: 10.1109/JSEN.2017.2772798  | 
										
| 7 |  
											 ZHOU K, LI D J, CUI A J, et al Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1143- 1151. 
											 												 doi: 10.23919/JSEE.2021.000098  | 
										
| 8 | WANG Y, ZHENG J H, ZENG J Z Dynamic shared segment protection algorithm with differentiated reliability in GMPLS networks. Journal of Systems Engineering and Electronics, 2009, 20 (1): 178- 184. | 
| 9 |  
											 MA W N, ZHAO F, LI X, et al Joint optimization of inspection-based and age-based preventive maintenance and spare ordering policies for single-unit systems. Journal of Systems Engineering and Electronics, 2022, 33 (5): 1268- 1280. 
											 												 doi: 10.23919/JSEE.2022.000120  | 
										
| 10 | ZHANG L P, SUN L S, LI W J, et al A joint Bayesian framework based on partial least squares discriminant analysis for finger vein recognition. IEEE Sensors Journal, 2022, 22 (1): 785- 794. | 
| 11 |  
											 FAISAL A I, MONDAL T, COWAN D, et al Characterization of knee and gait features from a wearable tele-health monitoring system. IEEE Sensors Journal, 2022, 22 (6): 4741- 4753. 
											 												 doi: 10.1109/JSEN.2022.3146617  | 
										
| 12 | LUO J Y, KONG Y X, HU C H, et al Key-performance- indicators-related fault subspace extraction for the reconstruction-based fault diagnosis. Measurement, 2021, 186 (8): 110- 119. | 
| 13 |  
											 SI Y, WANG Y, ZHOU D H Key-performance-indicator- related process monitoring based on improved kernel partial least squares. IEEE Trans. on Industrial Electronics, 2021, 68 (3): 2626- 2636. 
											 												 doi: 10.1109/TIE.2020.2972472  | 
										
| 14 | HU J, WEN C L, LI P, et al Direct projection to latent variable space for fault detection. Journal of the Franklin Institute, 2014, 351 (3): 1226- 1250. | 
| 15 |  
											 ZHOU D H, LI G, QIN S J Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56 (1): 168- 178. 
											 												 doi: 10.1002/aic.11977  | 
										
| 16 |  
											 QIN S J, ZHENG Y Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59 (2): 496- 504. 
											 												 doi: 10.1002/aic.13959  | 
										
| 17 |  
											 YIN S, DING S X, ZHANG P, et al Study on modifications of PLS approach for process monitoring. IFAC Proceedings Volumes, 2011, 44 (1): 12389- 12394. 
											 												 doi: 10.3182/20110828-6-IT-1002.02876  | 
										
| 18 | PENG K X, ZHANG K, YOU B, et al Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process. IET Control Theory & Applications, 2015, 9 (7): 1134- 1145. | 
| 19 |  
											 KASPAR M H, RAY W H Dynamic PLS modelling for process control. Chemical Engineering Science, 1993, 48 (20): 3447- 3461. 
											 												 doi: 10.1016/0009-2509(93)85001-6  | 
										
| 20 | QIN S J, MCAVOY T J. A data-based process modeling approach and its applications-sciencedirect. Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes. 1993, 5(25): 93−98. | 
| 21 |  
											 LAKSHMINARAYANAN S, SHAH S L, NANDAKUM- AR K Modeling and control of multivariable processes: Dynamic PLS approach. AIChE Journal, 1997, 43 (9): 2307- 2322. 
											 												 doi: 10.1002/aic.690430916  | 
										
| 22 |  
											 LI G, LIU B S, QIN S J, et al Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach. IEEE Trans. on Neural Networks, 2011, 22 (12): 2262- 2271. 
											 												 doi: 10.1109/TNN.2011.2165853  | 
										
| 23 |  
											 DONG Y N, QIN S J Dynamic-inner partial least squares for dynamic data modeling. IFAC-PapersOnLine, 2015, 48 (8): 117- 122. 
											 												 doi: 10.1016/j.ifacol.2015.08.167  | 
										
| 24 |  
											 DONG Y N, QIN S J Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68, 64- 72. 
											 												 doi: 10.1016/j.jprocont.2018.04.006  | 
										
| 25 | YUAN Z Y, MA X, QIN Y H, et al. Two-step partial least squares for monitoring processes. Proc. of the 33rd Chinese Control and Decision Conference 2021, 2808−2813. | 
| 26 | XU B, ZHU Q Q Concurrent auto-regressive latent variable model for dynamic anomaly detection-sciencedirect. Journal of Process Control, 2021, 108 (3): 1- 11. | 
| 27 |  
											 ZHU Q Q Latent variable regression for supervised modeling and monitoring. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (3): 800- 811. 
											 												 doi: 10.1109/JAS.2020.1003153  | 
										
| 28 |  
											 LI G, LIU B, ZHOU D H A new method of dynamic latent-variable modeling for process monitoring. IEEE Trans. on Industrial Electronics, 2014, 61 (11): 6438- 6445. 
											 												 doi: 10.1109/TIE.2014.2301761  | 
										
| 29 | DOWNS J J, VOGEL E F A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17 (3): 245- 255. | 
| 30 | HU C H, LUO J Y, KONG X Y, et al Novel fault subspace extraction methods for the reconstruction-based fault diagnosis. Journal of Process Control, 2021, 105 (1): 129- 140. | 
| 31 | CAPACI F, VANHATALO, KULAHCI E M, et al The revised Tennessee Eastman process simulator as testbed for SPC and DoE methods. Qual. Eng, 2019, 31 (2): 221- 229. | 
| 32 |  
											 DHIBI K, FEZAI R, MANSOURI M, et al A hybrid approach for process monitoring: improving data-driven methodologies with dataset size reduction and interval-Valued representation. IEEE Sensors Journal, 2020, 20 (17): 10228- 10239. 
											 												 doi: 10.1109/JSEN.2020.2991508  | 
										
| 33 | JIAO J F, YU H, WANG G A quality-related fault detection approach based on dynamic least squares for process monitoring. IEEE Trans. on Industrial Electronics, 2016, 63 (4): 2625- 2632. | 
| 34 |  
											 RUIZ-CARCEL C, CAO Y, MBA D, et al Statistical process monitoring of a multiphase flow facility. Control Engineering Practice, 2015, 42, 74- 88. 
											 												 doi: 10.1016/j.conengprac.2015.04.012  | 
										
| 35 | SUN C Y, YIN Y Z, KANG H B, et al. A distributed principal component regression method for quality-related fault detection and diagnosis. Information Sciences, 2022, 600: 301−302. | 
| No related articles found! | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||