1 |
CUI T J, SMITH D R, LIU R P. Metamaterials: theory, design, and applications. New York: Springer, 2009.
|
2 |
LIU S X, PEI C B, YE X D, et al Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers. Journal of Systems Engineering and Electronics, 2024, 35 (6): 1388- 1396.
|
3 |
LI W W, XU M Z, XU H X, et al Metamaterial absorbers: from tunable surface to structural transformation. Advanced Materials, 2022, 34 (38): 2202509.
doi: 10.1002/adma.202202509
|
4 |
WANG Y Z, XU H X, WANG C H, et al Research progress of electromagnetic metamaterial absorbers. Acta Physica Sinica, 2020, 69 (13): 134101.
doi: 10.7498/aps.69.20200355
|
5 |
WU P T, YU H, HU Y N, et al Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1081- 1087.
|
6 |
CHEN Y F, WANG L W Higher order implicit CNDG-PML algorithm for left-handed materials. Journal of Systems Engineering and Electronics, 2021, 32 (1): 31- 37.
doi: 10.23919/JSEE.2021.000004
|
7 |
TAO J Q, XU L L, PEI C B, et al Catfish effect induced by anion sequential doping for microwave absorption. Advanced Functional Materials, 2023, 33 (8): 2211996.
doi: 10.1002/adfm.202211996
|
8 |
WU L P, GAO H, GUO R H, et al MnO2 intercalation-guided impedance tuning of Carbon/Polypyrrole double conductive layers for electromagnetic wave absorption. Chemical Engineering Journal, 2023, 460, 141749.
doi: 10.1016/j.cej.2023.141749
|
9 |
ZHANG C, YIN S, LONG C, et al Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Optics Express, 2021, 29 (9): 14078- 14086.
doi: 10.1364/OE.423245
|
10 |
BAGMANCI M, AKGOL O, OZAKTURK M, et al Polarization independent broadband metamaterial absorber for microwave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (1): e21630.
doi: 10.1002/mmce.21630
|
11 |
ZHAN T, ZHOU C, TAO S F, et al. Shape optimization design of multi-beam reflector antenna based on multi-objective particle swarm optimization. Proc. of the International Applied Computational Electromagnetics Society Symposium, 2018. DOI: 10.23919/ACESS.2018.8669301.
|
12 |
KAUR K P, UPADHYAYA T, PALANDOKEN M, et al Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (1): e21646.
doi: 10.1002/mmce.21646
|
13 |
YAO X, HUANG Y Q, LI G Y, et al Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32 (8): e23222.
|
14 |
ZHANG L, LIU S, CUI T J Theory and application of coding metamaterials. Chinese Optics, 2017, 10 (1): 1- 12.
|
15 |
CUI T J, QI M Q, WAN X, et al Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 2014, 3 (10): e218.
|
16 |
TRAN M C, PHAM V H, HO T H, et al Broadband microwave coding metamaterial absorbers. Scientific Reports, 2020, 10 (1): 1810.
doi: 10.1038/s41598-020-58774-1
|
17 |
SUI S, MA H, WANG J F, et al Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber. Journal of Physics D:Applied Physics, 2015, 48 (21): 215101.
doi: 10.1088/0022-3727/48/21/215101
|
18 |
LIU S X, PEI C B, YE X D, et al. An efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers. Journal of Systems Engineering and Electronics, 2024, 35(6): 1388−1396.
|
19 |
XIONG Y, CHEN F, CHENG Y Z, et al Ultra-thin optically transparent broadband microwave metamaterial absorber based on indium tin oxide. Optical Materials, 2022, 132, 112745.
doi: 10.1016/j.optmat.2022.112745
|
20 |
YUAN Q, MA H, SUI S, et al A broadband wide-angle synthetical absorber designed by topology optimization of resistance surface and metal wires. IEEE Access, 2019, 7, 142675- 142681.
doi: 10.1109/ACCESS.2019.2942495
|
21 |
ZHU R, WANG J, SUI S, et al. Coding metasurface design via intelligence algorithm. Proc. of the Photonics & Electromagnetics Research Symposium, 2022: 333−336.
|
22 |
MO M M, MA W W, PANG Y Q, et al Broadband absorbent materials based on topology optimization design. Acta Physica Sinica, 2018, 67 (21): 217801.
doi: 10.7498/aps.67.20181170
|
23 |
ZHANG J, WANG G, WANG T, et al Genetic algorithms to automate the design of metasurfaces for absorption bandwidth broadening. ACS Applied Materials & Interfaces, 2021, 13 (6): 7792- 7800.
|
24 |
LI Z, STAN L, CZAPLEWSKI D A, et al Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization. Optics Letters, 2019, 44 (1): 114- 117.
doi: 10.1364/OL.44.000114
|
25 |
SUI S, MA H, CHANG H W, et al Optimization design of metamaterial absorbers based on an improved adaptive genetic algorithm. Applied Computational Electromagnetics Society Journal, 2019, 34 (8): 1198- 1203.
|
26 |
MUHLENBEIN H, PAAß G. From recombination of genes to the estimation of distributions I. Binary parameters. Berlin: Springer, 2005.
|
27 |
LARRANGA P, LOZANO J A. Estimation of distribution algorithms: a new tool for evolutionary computation. New York: Springer, 2001.
|
28 |
ZHOU A, SUN J, ZHANG Q An estimation of distribution algorithm with cheap and expensive local search methods. IEEE Trans. on Evolutionary Computation, 2015, 19 (6): 807- 822.
doi: 10.1109/TEVC.2014.2387433
|
29 |
TANG L X, SONG X M, LIU J Y, et al An estimation of distribution algorithm with filtering and learning. IEEE Trans. on Automation Science and Engineering, 2021, 18 (3): 1478- 1491.
doi: 10.1109/TASE.2020.3019694
|
30 |
PENG X G, GAO X G, YANG S X Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments. Soft Computing, 2011, 15 (2): 311- 326.
doi: 10.1007/s00500-010-0547-5
|
31 |
SONG Z C, MIN P P, YANG L, et al A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1228- 1232.
doi: 10.1109/LAWP.2022.3162330
|