Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 841-853.doi: 10.23919/JSEE.2021.000073
收稿日期:
2021-02-19
出版日期:
2021-08-18
发布日期:
2021-09-30
Tao YE1,*(), Zongyang ZHAO1(
), Jun ZHANG1(
), Xinghua CHAI2(
), Fuqiang ZHOU3(
)
Received:
2021-02-19
Online:
2021-08-18
Published:
2021-09-30
Contact:
Tao YE
E-mail:ayetao198715@163.com;303616426@qq.com;973974045@qq.com;cxh88_88@163.com;zfq@buaa.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853.
Tao YE, Zongyang ZHAO, Jun ZHANG, Xinghua CHAI, Fuqiang ZHOU. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853.
"
Component | Faster | SSD | Mbv2-SSD | YOLOv3 | YOLOv3-tiny | FOCS | Center Net | YOLOv4 | YOLOv4-tiny | LSL-Net |
Bird | 0.897 6 | 0.835 4 | 0.711 5 | 0.941 0 | 0.803 9 | 0.937 6 | 0.934 4 | 0.962 8 | 0.836 0 | 0.905 4 |
Kite | 0.785 1 | 0.729 2 | 0.679 4 | 0.861 7 | 0.685 6 | 0.880 7 | 0.867 1 | 0.916 7 | 0.757 4 | 0.871 4 |
UAV | 0.925 6 | 0.912 5 | 0.816 5 | 0.951 3 | 0.894 0 | 0.967 5 | 0.957 0 | 0.981 3 | 0.934 4 | 0.952 3 |
mAP | 0.869 5 | 0.825 7 | 0.735 8 | 0.918 0 | 0.794 5 | 0.928 6 | 0.919 5 | 0.953 6 | 0.842 6 | 0.909 7 |
FPS | 12 | 43 | 81 | 77 | 334 | 42 | 89 | 49 | 287 | 147 |
1 | ZHANG Y, SI G Y, WANG Y Z Simulation of unmanned aerial vehicle swarm electromagnetic operation concept. Systems Engineering and Electronics, 2020, 42 (7): 1510- 1518. |
2 | MA Q, ZHU B, CHENG Z D, et al Detection and recognition method of fast low-altitude unmanned aerial vehicle based on dual channel. Acta Optica Sinica, 2019, 39 (12): 105- 115. |
3 | DONG Q, ZOU Q H. Visual UAV detection method with online feature classification. Proc. of the IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, 2017: 429–432. |
4 | HU Y Y, WU X J, ZHENG G D, et al Object detection of UAV for anti-UAV based on improved YOLO v3. Chinese Control Conference, 2019, 8386- 8390. |
5 | ZHANG H, CAO C H, XU L W, et al A UAV detection algorithm based on an artificial neural network. IEEE Access, 2018, 6 (1): 24720- 24728. |
6 | ZHAO W C, ZHANG Q, LI H, et al. Low-altitude UAV detection method based on one-staged detection framework. Proc. of the 2nd International Conference on Advances in Computer Technology, Information Science and Communications, 2020: 112–117. |
7 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778. |
8 |
LOW D G Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
9 | BAY H, TUYTELAARS T, GOOL L V SURF: speeded up robust features. Computer Vision & Image Understanding, 2006, 110 (3): 404- 417. |
10 | FREUND Y. Experiments with a new boosting algorithm. Proc. of the 13th International Conference on Machine Learning, 1996: 148–156. |
11 |
WU S Q, NAGAHASHI H Parameterized AdaBoost: introducing a parameter to speed up the training of real AdaBoost. IEEE Signal Processing Letters, 2014, 21 (6): 687- 691.
doi: 10.1109/LSP.2014.2313570 |
12 | WANG X H, ZHANG C, LI C, et al Unmanned aerial vehicles target detection based on bio-inspired visual attention. Aeronautical Science & Technology, 2015, 26 (11): 76- 82. |
13 |
OMID-ZOHOOR A, YOUNG C, TA D, et al Toward always-on mobile object detection: energy versus performance tradeoffs for embedded hog feature extraction. IEEE Trans. on Circuits and Systems for Video Technology, 2018, 28 (5): 1102- 1115.
doi: 10.1109/TCSVT.2017.2653187 |
14 | LIU Y, DU H J, YUE Z H, et al Unmanned aerial vehicle detection method based on random forest. Computer Engineering and Applications, 2019, 55 (7): 162- 167. |
15 |
LI Y Z, XIE P C, TANG Z S, et al SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (8): 1225- 1229.
doi: 10.1109/LGRS.2019.2894385 |
16 |
BAZI Y, MELGANI F Convolutional SVM networks for object detection in UAV imagery. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (6): 3107- 3118.
doi: 10.1109/TGRS.2018.2790926 |
17 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional neural networks. Proc. of the European Conference on Computer Vision, 2014: 818–833. |
18 | GIRSHICK R, DONAHUE J, DARRELL T, et al Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 580- 587. |
19 | GIRSHICK R. Fast R-CNN. Proc. of the IEEE International Conference on Computer Vision, 2015: 1440–1448. |
20 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
21 | WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 2965–2974. |
22 | ANGUELOV D, ERHAN D, SZEGEDY C, et al. SSD: single shot multibox detector. Proc. of the European Conference on the Computer Vision, 2016: 21–37. |
23 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779–788. |
24 | REDOMN J, FARHADI A. YOLO9000: better, faster, stronger. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517–6525. |
25 | REDOMN J, FARHADI A. YOLOv3: an incremental improvement. https://arXiv.arg/abs/1804.02767. |
26 | BOCHKOVSKIY A, WANG C Y, MARK LIAO H Y. YOLOv4: optimal speed and accuracy of object detection. https://arXiv.arg/abs/2004.10934. |
27 | ZHOU X, WANG D, KRAHENBUHL P. Objects as points. https://arXiv.arg/abs/1904.07850. |
28 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection. Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 9626–9635. |
29 | LI Q Z, XIONG R, WANG R P, et al Research on real-time UAV recognition method based on SSD algorithm. Ship Electronic Engineering, 2019, 39 (5): 30- 35. |
30 |
KRIZHEVSKY A, SUTSKEVER I, GEOFFREY E H ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
31 | RANGA A, TYAGI A, BERG A C, et al. DSSD: deconvolutional single shot detector. https://arXiv.arg/abs/1701.06659. |
32 |
ZENG J X, XIONG J L, FU X, et al ReFPN-FCOS: one-stage object detection for feature learning and accurate localization. IEEE Access, 2020, 8, 225052- 225063.
doi: 10.1109/ACCESS.2020.3044564 |
33 | FAN J X, LI D W, WANG H L, et al. UAV low altitude flight threat perception based on improved SSD and KCF. Proc. of the IEEE 15th International Conference on Control and Automation, 2019: 121–132. |
34 |
FAN S Q, ZHU F H, CHEN S C, et al FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection. IEEE Trans. on Vehicular Technology, 2021, 70 (1): 121- 132.
doi: 10.1109/TVT.2021.3049805 |
35 | MA Q, ZHU B, ZHANG H W, et al Low-altitude UAV detection and recognition method based on optimized YOLOv3. Laser & Optoelectronics Progress, 2019, 56 (20): 279- 286. |
36 | CUI Y P, WANG Y H, HU J W Detection method for a dynamic small target using the improved YOLOv3. Journal of Xidian University, 2020, 47 (3): 1- 7. |
37 | ARTUUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding. Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007: 1027–1035. |
38 |
WEI X K, WEI D H, SUO D, et al Multi-object defect identification for railway track line based on image processing and improved YOLOv3 model. IEEE Access, 2020, 8, 61973- 61988.
doi: 10.1109/ACCESS.2020.2984264 |
39 | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 1571–1580. |
40 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. computer vision and pattern recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778. |
41 | XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987–5995. |
42 | TSUNG Y L, MICHAEL M, BELONGIE S, et al. Microsoft COCO: common objects in context. Proc. of the European Conference on Computer Vision, 2014: 740–755. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||