Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 344-352.doi: 10.23919/JSEE.2024.000094
• ELECTRONICS TECHNOLOGY • Previous Articles
Yongqing LIU1,2(), Peng LIU1(
), Limin ZHAI1,2(
), Shuyi LIU1,2(
), Yan JIA1,2(
), Xiangkun ZHANG1,2,*(
)
Received:
2023-10-31
Accepted:
2024-06-26
Online:
2025-04-18
Published:
2025-05-20
Contact:
Xiangkun ZHANG
E-mail:liuyongqing20@mails.ucas.ac.cn;liupeng@mirslab.cn;985422574@qq.com;919379957@qq.com;jiayan18@mails.ucas.ac.cn;zhangxiangkun@mirslab.cn
About author:
Yongqing LIU, Peng LIU, Limin ZHAI, Shuyi LIU, Yan JIA, Xiangkun ZHANG. Design and implementation of automatic gain control algorithm for Ocean 4A scatterometer[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 344-352.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | BOUTIN J Surface salinity retrieved from SMOS measurements over the global ocean: imprecisions due to sea surface roughness and temperature uncertainties. Journal of Atmospheric and Oceanic Technology, 2004, 21 (9): 1432- 1447. |
2 | HUANG J M, ZHUANG W, YAN X H, et al Impacts of the upper-ocean salinity variations on the decadal sea level change in the Southeast Indian Ocean during the Argo era. Acta Oceanologica Sinica, 2020, 39 (7): 1- 10. |
3 | HOLLINGER J Passive microwave measurements of sea surface roughness. IEEE Trans. on Geoscience and Remote Sensing, 1971, 9 (3): 165- 169. |
4 | FONT J SMOS: the challenging sea surface salinity measurement from space. Proceedings of the IEEE, 2010, 98 (5): 649- 665. |
5 | YUEH S H Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans. on Geoscience and Remote Sensing, 2001, 39 (5): 1049- 1060. |
6 | SWIFT C, MCINTOSH E Considerations for micro-wave remote sensing of ocean-surface salinity. IEEE Trans. on Geoscience and Remote Sensing, 1983, 21 (4): 480- 491. |
7 | FORE A G Combined active/passive retrievals of ocean vector wind and sea surface salinity with SMAP. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (12): 7396- 7404. |
8 | MA W T, LIU G H, YU Y, et al Roughness correction method for salinity remote sensing using combined active/passive observations. Acta Oceanologica Sinica, 2021, 40 (11): 189- 195. |
9 | FREEDMAN A, MCWATTERS D, SPENCER M. The aquarius scatterometer: an active system for measuring surface roughness for sea-surface rightness temperature correction. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2006: 1685−1688. |
10 | ZHANG X K, LIU H. Design of phased array miccrowave scatterometer with digital beamforming technique in active and passive combining observation system for sea surface salinity. Proc. of the IGARSS IEEE International Geoscience and Remote Sensing Symposium , 2013: 1563−1566. |
11 | TONG Z Y, CHEN J M, YANG R L. A dual-threshold stepped method for digital AGC gain control in spaceborne SAR. Remote Sensing Technology and Application, 2007, 22(1): 83−87. (in Chinese) |
12 |
LIU Y Q, WANG T, YUN R S, et al Analysis of onboard verification flight test for the salinity satellite scatterometer. Sensors, 2023, 23 (21): 8846.
doi: 10.3390/s23218846 |
13 | DUNCAN S R, GREGERS-HANSEN V, MCCONNELL J P. A stacked analog-to-digital converter providing 100 dB of dynamic range. Proc. of the IEEE International Radar Conference, 2005: 31−36. |
14 | ZHANG S B, LI H H. Application of digital AGC technology in tracking radar. Ship Electronic Countermeasures, 2014( 1): 53−56. (in Chinese) |
15 | JIANG C J, ZHENG Z Q Application research of 100 dB AGC in radar ranging system. Journal of East China Normal University (Natural Science), 2002, (3): 110- 112. |
16 | PRAKASAM L G M, ROY T, MEENA D. Digital signal generator and receiver design for S-band radar. Proc. of the IEEE Radar Conference, 2007: 1049−1054. |
17 | ZHEN D Y, ZHANG F G. FPGA design on saturation correction in radar digital IF receiver. Proc. of the 6th International Conference on ASIC, 2005. DOI: 10.1109/ICASIC.2005.1611423. |
18 | ZENG W G, SUN Y F, ZHU P Y. The DAGC algorithm design for large dynamic range & high sensitivity radar digital receiver. Proc. of the 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012. DOI: 10.1109/FSKD.2012.6234143. |
19 | JIAN P F, L B Y, LZ Q. Threshold variation based analysis and implementation of an optimized AGC circuitry for digital IF receiver. Proc. of the International Conference on Computer Application and System Modeling, 2010. DOI: 10.1109/ICCASM.2010.5622893. |
20 | RAO B S, DAS R, BALALAJI G G. High dynamic range monopulse microwave receiver front-end. Proc. of the Asia-Pacific Microwave Conference, 2007. DOI: 10.1109/APMC.2007.4554812. |
21 | TORO W, VELEZ J, PARDO M Implementation of an LC-VCO with built-in AGC for oceanographic radar applications. Latin America Transactions, 2016, 14 (4): 1645- 1651. |
22 | LIU R, ZHU D Y, WANG D, et al. High resolution SAR signal processing system using FPGA. Proc. of the International Applied Computational Electromagnetics Society Symposium-China, 2019. DOI: 10.23919/ACE548530.2019.9060594. |
23 | LIU R M, LI R, HAN T. Design of a radar transceiver integrated control unit based on FPGA. Proc. of the IEEE International Conference on Artificial Intelligence and Computer Applications, 2022. DOI: 10.1109.ICAICA54878.2022.9844548. |
24 | SHEHATA M G. Design and implementation of LFMCW radar signal processor for slowly moving target detection using FPGA. Proc. of the 12th International Conference on Electrical Engineering, 2020. DOI: 10.1109/ICEENG45378.2020.9171701. |
25 | SUMMER R. Architecture study for a bare-metal direct conversion radar FPGA testbench. Proc. of the IEEE Radar Conference, 2021. DOI: 10.1109/RadarConf2147009.2021.9455320. |
26 | CHAKRAVARTI M, DAGGULA R. Development of digital RF memory based target echo simulator for Doppler RADARS. Proc. of the Applied Electromagnetics Conference, 2009. DOI: 10.1109/AEMC.2009.5430576. |
27 | NI C, TAN H, LIU Q. Channel pre-distortion compensation techniques in SAR echo simulator. Proc. of the 11th International Symposium on Antennas, Propagation and EM Theory, 2016. DOI: 10.1109/ISAPE.2016.7834044. |
28 | QIN X, CHEN H, CUI T J. A SAR raw echo signal simulator for terrain surface. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2016. DOI: 10.1109/ISAPE.2016.7834044. |
29 | WEN L, ZENG T. Design and implementation of real-time SAR echo simulator for natural scene. Proc. of the IEEE 2nd International Conference on Information Management and Engineering, 2010. DOI: 10.1109/ICIME.2010.5477466. |
30 | SHISHMINTSEV D, BOKOV A. Calibration and evaluation methods of performance of DRFM-technology radar echo simulator. Proc. of the Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, 2020: 372−375 |
31 | JIANG Y, YE H X. Echo simulation method for arbitrary radar system with wide-band RCS data of scattering scene. Proc. of the International Conference on Microwave and Millimeter Wave Technology, 2021. DOI: 10.1109/ICMMT52847.2021.9618539. |
[1] | Rongling Lang, Xinyue Li, Fei Gao, and Liang Yang. Re-scaling and adaptive stochastic resonance as a tool for weak GNSS signal acquisition [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 290-296. |
[2] | Kaizhuo Lei, Qunfei Zhang, Ziliang Qiao, Lingling Zhang, Qiang Huang, and Shiqi. Response characteristics of sonar receiver under intense sound pulse [J]. Journal of Systems Engineering and Electronics, 2012, 23(6): 843-848. |
[3] | Zhang Jingjuan & Chen Shiru. Algorithm of sky-ground-wave signal separation in CDMA system [J]. Journal of Systems Engineering and Electronics, 2008, 19(2): 234-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||