With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology, the new cloud manufacturing system (NCMS) built on the connotation of cloud manufacturing 3.0 presents a new business model of “Internet of everything, intelligent leading, data driving, shared services, cross-border integration, and universal innovation”. The network boundaries are becoming increasingly blurred, NCMS is facing security risks such as equipment unauthorized use, account theft, static and extensive access control policies, unauthorized access, supply chain attacks, sensitive data leaks, and industrial control vulnerability attacks. Traditional security architectures mainly use information security technology, which cannot meet the active security protection requirements of NCMS. In order to solve the above problems, this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS. It adopts the zero trust concept and effectively integrates multiple security capabilities such as network, equipment, cloud computing environment, application, identity, and data. It adopts a new access control mode of “continuous verification + dynamic authorization”, classified access control mechanisms such as attribute-based access control, role-based access control, policy-based access control, and a new data security protection system based on blockchain, achieving “trustworthy subject identity, controllable access behavior, and effective protection of subject and object resources”. This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises, and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.
The robotic airship can provide a promising aerostatic platform for many potential applications. These applications require a precise autonomous trajectory tracking control for airship. Airship has a nonlinear and uncertain dynamics. It is prone to wind disturbances that offer a challenge for a trajectory tracking control design. This paper addresses the airship trajectory tracking problem having time varying reference path. A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters. It uses extended Kalman filter (EKF) for uncertainty and disturbance estimation. The estimated parameters are used by sliding mode controller (SMC) for ultimate control of airship trajectory tracking. This comprehensive algorithm, EKF based SMC (ESMC), is used as a robust solution to track airship trajectory. The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies. The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis. The simulation results show that the proposed method efficiently tracks the desired trajectory. The method solves the stability, convergence, and chattering problem of SMC under model uncertainties and wind disturbances.
The observation error model of the underwater acoustic positioning system is an important factor to influence the positioning accuracy of the underwater target. For the position inconsistency error caused by considering the underwater target as a mass point, as well as the observation system error, the traditional error model best estimation trajectory (EMBET) with little observed data and too many parameters can lead to the ill-condition of the parameter model. In this paper, a multi-station fusion system error model based on the optimal polynomial constraint is constructed, and the corresponding observation system error identification based on improved spectral clustering is designed. Firstly, the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization. Then a multi-station non-oriented graph network is established, which can address the problem of the inaccurate identification for the system errors. Moreover, the similarity matrix of the spectral clustering is improved, and the iterative identification for the system errors based on the improved spectral clustering is proposed. Finally, the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accurately identify the system errors, and moreover can improve the positioning accuracy for the underwater target positioning.
Autonomous umanned aerial vehicle (UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decision-making policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods. Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes (MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
Evolutionary algorithms (EAs) have been used in high utility itemset mining (HUIM) to address the problem of discovering high utility itemsets (HUIs) in the exponential search space. EAs have good running and mining performance, but they still require huge computational resource and may miss many HUIs. Due to the good combination of EA and graphics processing unit (GPU), we propose a parallel genetic algorithm (GA) based on the platform of GPU for mining HUIM (PHUI-GA). The evolution steps with improvements are performed in central processing unit (CPU) and the CPU intensive steps are sent to GPU to evaluate with multi-threaded processors. Experiments show that the mining performance of PHUI-GA outperforms the existing EAs. When mining 90% HUIs, the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
The rapid growth of mobile applications, the popularity of the Android system and its openness have attracted many hackers and even criminals, who are creating lots of Android malware. However, the current methods of Android malware detection need a lot of time in the feature engineering phase. Furthermore, these models have the defects of low detection rate, high complexity, and poor practicability, etc. We analyze the Android malware samples, and the distribution of malware and benign software in application programming interface (API) calls, permissions, and other attributes. We classify the software’s threat levels based on the correlation of features. Then, we propose deep neural networks and convolutional neural networks with ensemble learning (DCEL), a new classifier fusion model for Android malware detection. First, DCEL preprocesses the malware data to remove redundant data, and converts the one-dimensional data into a two-dimensional gray image. Then, the ensemble learning approach is used to combine the deep neural network with the convolutional neural network, and the final classification results are obtained by voting on the prediction of each single classifier. Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models, the proposed DCEL has a higher detection rate, higher recall rate, and lower computational cost.
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF) master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
For bistatic multiple-input multiple-output (MIMO) radar, this paper presents a robust and direction finding method in strong impulse noise environment. By means of a new lower order covariance, the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood (ML) estimation method. A quantum equilibrium optimizer algorithm (QEOA) is devised to resolve the corresponding objective function for efficient and accurate direction finding. The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations, e.g., locating coherent signal sources with very few snapshots in strong impulse noise. Other than that, the Cramér-Rao bound (CRB) under impulse noise environment has been drawn to test the capability of the presented method.
To address the current problems of poor generality, low real-time, and imperfect information transmission of the battlefield target intelligence system, this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare. First, an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling, which reduces the difficulty of the planning and design process. The method introduces the Department of Defense architecture framework (DoDAF) modeling method, the multi-living agent (MLA) theory modeling method, and other combinations for planning and modeling. A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed. Further, the liveness analysis of the battlefield target intelligence system is carried out, and the problems of the existing system are presented from several aspects. And the technical prediction of the development and construction is given, which provides directional ideas for the subsequent research and development of the battlefield target intelligence system. In the end, the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets (CPN) simulation software. The analysis demonstrates the reasonable integrity of its logic.
Cascading failures in infrastructure networks have serious impacts on network function. The limited capacity of network nodes provides a necessary condition for cascade failure. However, the network capacity cannot be infinite in the real network system. Therefore, how to reasonably allocate the limited capacity resources is of great significance. In this article, we put forward a capacity allocation strategy based on community structure against cascading failure. Experimental results indicate that the proposed method can reduce the scale of cascade failures with higher capacity utilization compared with Motter-Lai (ML) model. The advantage of our method is more obvious in scale-free network. Furthermore, the experiment shows that the cascade effect is more obvious when the vertex load is randomly varying. It is known to all that the growth of network capacity can make the network more resistant to destruction, but in this paper it is found that the contribution rate of unit capacity rises first and then decreases with the growth of network capacity cost.
Blockchain technology has attracted worldwide attention, and has strong application potential in complex product system supply chain and other fields. This paper focuses on the supply chain management issues of complex product systems, and combines the technical characteristics of blockchain, such as tamper resistance and strong resistance to destruction, to conduct research on the application of blockchain based supply chain management for complex product systems. The blockchain technology is integrated into functional modules such as business interaction, privacy protection, data storage, and system services. The application technology architecture of complex product system supply chain integrated with blockchain is constructed. The application practice in complex product system supply chain is carried out. The results show that the supply chain of complex product systems has the functions of traceability, cost reduction, and anti-counterfeiting protection. Finally, the future development direction and research focus of the complex product system supply chain based on blockchain are prospected, which provides a reference for the equipment manufacturing supply chain management in the military industry.
For the multicopter with more than four rotors, the rotor fault information is unobservable, which limits the application of active fault-tolerant on multicopters. This paper applies an existing fault-tolerant control method for quadcopter to multicopter with more than four rotors. Without relying on rotor fault information, this method is able to stabilize the multicopter with multiple rotor failures, which is validated on the hexacopter and octocopter using the hardware-in-the-loop simulations. Additionally, the hardware-in-the-loop simulations demonstrate that a more significant tilt angle in flight will inhibit the maximum tolerable number of rotor failures of a multicopter. The more significant aerodynamic drag moment will make it difficult for the multicopter to regain altitude control after rotor failure.
In this paper, an efficient unequal error protection (UEP) scheme for online fountain codes is proposed. In the build-up phase, the traversing-selection strategy is proposed to select the most important symbols (MIS). Then, in the completion phase, the weighted-selection strategy is applied to provide low overhead. The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme. Simulation results show that in terms of MIS and the least important symbols (LIS), when the bit error ratio is $ {10^{ - 4}} $, the proposed scheme can achieve $ 85{\text{% }} $ and $ 31.58{\text{% }} $ overhead reduction, respectively.
Passive jamming is believed to have very good potential in countermeasure community. In this paper, a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed. The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state, and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects. Dependency of the decoying effect on corner reflectors ’ radar cross section and positions are analyzed and simulated. Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
To maintain the stability of the inter-satellite link for gravitational wave detection, an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed. Different from the traditional fault diagnosis optimization algorithms, the fault intelligent learning method proposed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong coupling nonlinearity. By constructing a two-layer learning network, the method enables efficient joint diagnosis of fault areas and fault parameters. The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s, and the fault diagnosis efficiency is improved by 99.8% compared with the traditional algorithm.
In modern war, radar countermeasure is becoming increasingly fierce, and the enemy jamming time and pattern are changing more randomly. It is challenging for the radar to efficiently identify jamming and obtain precise parameter information, particularly in low signal-to-noise ratio (SNR) situations. In this paper, an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue. Firstly, a joint algorithm based on YOLOv5 convolutional neural networks (CNNs) is proposed, which is used to achieve the jamming signal classification and preliminary parameter estimation. Furthermore, an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test, feature region search, position regression, spectrum interpolation, etc., which realizes the accurate estimation of jamming carrier frequency, relative delay, Doppler frequency shift, and other parameters. Finally, the approach has improved performance for complex jamming recognition and parameter estimation under low SNR, and the recognition rate can reach 98% under ?15 dB SNR, according to simulation and real data verification results.
In order to effectively defend against the threats of the hypersonic gliding vehicles (HGVs), HGVs should be tracked as early as possible, which is beyond the capability of the ground-based radars. Being benefited by the developing mega-constellations in low-Earth orbit, this paper proposes a relay tracking mode to track HGVs to overcome the above problem. The whole tracking mission is composed of several tracking intervals with the same duration. Within each tracking interval, several appropriate satellites are dispatched to track the HGV. Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion. The tracking performances of the proposed tracking mode and the other two traditional tracking modes, including the stare and track-rate modes, are compared by simulation. The results show that the relay tracking mode can track the whole trajectory of a HGV, while the stare mode can only provide a very short tracking arc. Moreover, the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.
With the increasing precision of guidance, the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant. In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence, this paper suggests a guidance system model involving a novel integral sliding mode guidance law (ISMGL). The method utilizes the dynamic characteristics and the impact angle, combined with a sliding mode surface scheme that includes the desired line-of-sight angle, line-of-sight angular rate, and second-order differential of the angular line-of-sight. At the same time, the evaluation scenario considere the target maneuvering in the system as the external disturbance, and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command. The proposed system’s stability is proven based on the Lyapunov stability criterion. The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws. Furthermore, ISMGL has a more accurate impact angle and fast convergence speed.
Natural events have had a significant impact on overall flight activity, and the aviation industry plays a vital role in helping society cope with the impact of these events. As one of the most impactful weather typhoon seasons appears and continues, airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms. This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation. The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules, and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction. With more dependable data accuracy, problems can be analysed rapidly and more efficiently, enabling better decision-making with a proactive versus reactive posture. When multiple modalities coexist, features can be extracted from them simultaneously to supplement each other’s information. An actual case study, the typhoon Lichma that swept China in 2019, has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
As the “engine” of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy’s attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation (FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85% of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.
It is important to calculate the reachable domain (RD) of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient database-generation method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node (RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than ${0.01^ \circ }$ on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
The quantum entangled photon-pair source, as an essential component of optical quantum systems, holds great potential for applications such as quantum teleportation, quantum computing, and quantum imaging. The current workhorse technique for preparing photon pairs involves performing spontaneous parametric down conversion (SPDC) in bulk nonlinear crystals. However, the current power consumption and cost of preparing entangled photon-pair sources are relatively high, posing challenges to their integration and scalability. In this paper, we propose a low-power system model for the quantum entangled photon-pair source based on SPDC theory and phase matching technology. This model allows us to analyze the performance of each module and the influence of component characteristics on the overall system. In our experimental setup, we utilize a 5 mW laser diode and a typical type-II barium metaborate (BBO) crystal to prepare an entangled photon-pair source. The experimental results are in excellent agreement with the model, indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources. This achievement not only contributes to the practical application of quantum entanglement lighting, but also paves the way for the widespread adoption of optical quantum systems in the future.
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion, but the expert knowledge is not fully utilized, a heterogeneous information fusion recognition method based on belief rule structure is proposed. By defining the continuous probabilistic hesitation fuzzy linguistic term sets (CPHFLTS) and establishing CPHFLTS distance measure, the belief rule base of the relationship between feature space and category space is constructed through information integration, and the evidence reasoning of the input samples is carried out. The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition. Compared with the other methods, the proposed method has a higher correct recognition rate under different noise levels.
In this paper, an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle. Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time. The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatio-temporal aligned hull deformation measurement model. In addition, two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation. The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
With the development of information technology, a large number of product quality data in the entire manufacturing process is accumulated, but it is not explored and used effectively. The traditional product quality prediction models have many disadvantages, such as high complexity and low accuracy. To overcome the above problems, we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model: radial basis function model optimized by the firefly algorithm with Levy flight mechanism (RBFFALM). First, the new data equalization method is introduced to pre-process the dataset, which reduces the dimension of the data, removes redundant features, and improves the data distribution. Then the RBFFALFM is used to predict product quality. Comprehensive experiments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous methods on predicting pro-duct quality.
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces. In order to alleviate such condition, unconditionally stable Crank-Nicolson Douglas-Gunn (CNDG) algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma. Within the CNDG algorithm, an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains. Convolutional perfectly matched layer (CPML) formulation is proposed to efficiently solve the open region problems. Numerical example is carried out for the illustration of effectiveness including the efficiency, resources, and absorption. Through the results, it can be concluded that the proposed scheme shows considerable performance during the simulation.
Based on the characteristics of high-end products, crowd-sourcing user stories can be seen as an effective means of gathering requirements, involving a large user base and generating a substantial amount of unstructured feedback. The key challenge lies in transforming abstract user needs into specific ones, requiring integration and analysis. Therefore, we propose a topic mining-based approach to categorize, summarize, and rank product requirements from user stories. Specifically, after determining the number of story categories based on pyLDAvis, we initially classify “I want to” phrases within user stories. Subsequently, classic topic models are applied to each category to generate their names, defining each post-classification user story category as a requirement. Furthermore, a weighted ranking function is devised to calculate the importance of each requirement. Finally, we validate the effectiveness and feasibility of the proposed method using 2 966 crowd-sourced user stories related to smart home systems.
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume. When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph. However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.
Based on the wave attack task planning method in static complex environment and the rolling optimization framework, an online task planning method in dynamic complex environment based on rolling optimization is proposed. In the process of online task planning in dynamic complex environment, online task planning is based on event triggering including target information update event, new target addition event, target failure event, weapon failure event, etc., and the methods include defense area reanalysis, parameter space update, and mission re-planning. Simulation is conducted for different events and the result shows that the index value of the attack scenario after re-planning is better than that before re-planning and according to the probability distribution of statistical simulation method, the index value distribution after re-planning is obviously in the region of high index value, and the index value gap before and after re-planning is related to the degree of posture change.
Unmanned aerial vehicles (UAVs) may be subjected to unintentional radio frequency interference (RFI) or hostile jamming attack which will lead to fail to track global navigation satellite system (GNSS) signals. Therefore, the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem. In this paper, a distortionless phase digital beamforming (DBF) algorithm with self-calibration antenna arrays is proposed, which enables to obtain distortionless carrier phase while suppressing jamming. Additionally, architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed. Finally, the performance of the algorithm is evaluated, including antenna calibration accuracy, carrier phase distortionless accuracy, and carrier phase measurement accuracy without jamming. Meanwhile, the maximal jamming to signal ratio (JSR) and real time kinematic (RTK) positioning accuracy under wideband jamming are also investigated. The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling. Finally, by employing the proposed effector and the controller, numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift. In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79% and 7.16% respectively in comparison to the traditional calibration method.
Survivability is used to evaluate the ability of the satellite to complete the mission after failure, while the duration of maintaining performance is often ignored. An effective backup strategy can restore the constellation performance timely, and maintain good network communication performance in case of satellite failure. From the perspective of network utility, the low Earth orbit (LEO) satellite constellation survivable graphical evaluation and review technology (GERT) network with backup satellites is constructed. A network utility transfer function algorithm based on moment generating function and Mason formula is proposed, the network survivability evaluation models of on-orbit backup strategy and ground backup strategy are established. The survivable GERT model can deduce the expected maintenance time of LEO satellite constellation under different fault states and the network utility generated during the state maintenance period. The case analysis shows that the proposed survivable GERT model can consider the satellite failure rate, backup satellite replacement rate, maneuver control replacement ability and life requirement, and effectively determine the optimal survivable backup strategy for LEO satellite constellation with limited resources according to the expected network utility.
The formation control of multiple unmanned aerial vehicles (multi-UAVs) has always been a research hotspot. Based on the straight line trajectory, a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption. In order to avoid the collision between UAVs in the formation process, the concept of safety ball is introduced, and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs. Based on the idea of game theory, a method of UAV motion form setting based on the maximization of interests is proposed, including the maximization of self-interest and the maximization of formation interest is proposed, so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance. Finally, through simulation verification, the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length, and the UAV motion selection method based on the maximization interests can effectively complete the task formation.
To investigate the real-time mean orbital elements (MOEs) estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit transfer, a modified augmented square-root unscented Kalman filter (MASUKF) is proposed. The MASUKF is composed of sigma points calculation, time update, modified state jumping detection, and measurement update. Compared with the filters used in the existing literature on MOEs estimation, it has three main characteristics. Firstly, the state vector is augmented from six to nine by the added thrust acceleration terms, which makes the filter additionally give the state-jumping-thrust-acceleration estimation. Secondly, the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency. Thirdly, when sate jumping is detected, the covariance matrix inflation will be done, and then an extra time update process will be conducted at this time instance before measurement update. In this way, the relatively large estimation error at the detection moment can significantly decrease. Finally, typical simulations are performed to illustrated the effectiveness of the method.
Non-uniform linear array (NULA) configurations are well renowned due to their structural ability for providing increased degrees of freedom (DOF) and wider array aperture than uniform linear arrays (ULAs). These characteristics play a significant role in improving the direction-of-arrival (DOA) estimation accuracy. However, most of the existing NULA geometries are primarily applicable to circular sources (CSs), while they limitedly improve the DOF and continuous virtual aperture for non-circular sources (NCSs). Toward this purpose, we present a triad-displaced ULAs (Tdis-ULAs) configuration for NCS. The Tdis-ULAs structure generally consists of three ULAs, which are appropriately placed. The proposed antenna array approach fully exploits the non-circular characteristics of the sources. Given the same number of elements, the Tdis-ULAs design achieves more DOF and larger hole-free co-array aperture than its sparse array competitors. Advantageously, the number of uniform DOF, optimal distribution of elements among the ULAs, and precise element positions are uniquely determined by the closed-form expressions. Moreover, the proposed array also produces a filled resulting co-array. Numerical simulations are conducted to show the performance advantages of the proposed Tdis-ULAs configuration over its counterpart designs.
The quality of synthetic aperture radar (SAR) image degrades in the case of multiple imaging projection planes (IPPs) and multiple overlapping ship targets, and then the performance of target classification and recognition can be influenced. For addressing this issue, a method for extracting ship targets with overlaps via the expectation maximization (EM) algorithm is proposed. First, the scatterers of ship targets are obtained via the target detection technique. Then, the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP. Afterwards, a novel image amplitude estimation approach is proposed, with which the radar image of a single target with a single IPP can be generated. The proposed method can accomplish IPP selection and targets separation in the image domain, which can improve the image quality and reserve the target information most possibly. Results of simulated and real measured data demonstrate the effectiveness of the proposed method.
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment, the key technologies such as machine vision and manipulator control are studied, and a complete manipulator vision tracking system is designed. Firstly, Denavit-Hartenberg (D-H) parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator. At the same time, a binocular camera is used to obtain the three-dimensional position of the target. Secondly, in order to make the manipulator track the target more accurately, the fuzzy adaptive square root unscented Kalman filter (FSRUKF) is proposed to estimate the target state. Finally, the manipulator tracking system is built by using the position-based visual servo. The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter (SRUKF), which meets the application requirements of the manipulator tracking system, and basically meets the application requirements of the manipulator tracking system in the practical experiments.