Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 311-322.doi: 10.23919/JSEE.2024.000044
• ELECTRONICS TECHNOLOGY •
Zhichao XU1,2(), Faping LU2,*(
), Lifan ZHANG3(
), Dongkai YANG1(
), Chuanhui LIU2(
), Jiafang KANG2(
), Qi AN2(
), Zhilin ZHANG2(
)
Received:
2024-01-24
Online:
2025-04-18
Published:
2025-05-20
Contact:
Faping LU
E-mail:xzc8166@163.com;lufaping@163.com;2758767464@qq.com;edkyang@buaa.edu.cn;lchgfy@163.com;13791201919@163.com;18153567186@163.com;zzl19970811@163.com
About author:
Supported by:
Zhichao XU, Faping LU, Lifan ZHANG, Dongkai YANG, Chuanhui LIU, Jiafang KANG, Qi AN, Zhilin ZHANG. Generalized multiple-mode prolate spheroidal wave functions multi-carrier waveform with index modulation[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 311-322.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Mapping scheme of GMM-PSWFs-IM"
Bit information | Signal index | Subcarrier mapping |
[0,0,0] | {3,1,2} | { |
[0,0,1] | {3,2,1} | { |
[0,1,0] | {1,3,2} | { |
[0,1,1] | {2,3,1} | { |
[1,0,0] | {1,2,3} | { |
[1,0,1] | {2,1,3} | { |
[1,1,0] | {1,1,3} | { |
[1,1,1] | {2,2,3} | { |
Table 2
System SE of different MCM methods (BER=10?5)"
Modulation method | g | n | k | m | SE/(bit/s/Hz) | (Eb/N0)/dB | Improvement/% |
BIM-MCM-PSWFs [ | 11 | 8 | 7 | 4 | 3.63 | 13.14 | 12.4 |
DM-MCM-PSWFs [ | 10 | 9 | 5 | / | 3.09 | 12.23 | 32.0 |
MCM-PSWFs-SGO-2PAM [ | 9 | 10 | 7 | / | 2.41 | 11.05 | 69.3 |
MCM-PSWFs-SGO-4PAM [ | 10 | 9 | 5 | / | 2.89 | 14.69 | 41.2 |
GMM-PSWFs-IM (the proposed method) | 9 | 10 | / | / | 4.08 | 13.92 | / |
Table 3
Signal index detection multiplication operation amount with 1.44 MHz bandwidth"
Modulation method | Computational complexity | n | k | m | Operation amount |
DM-MCM-PSWFs-ML [ | 4 | 2 | / | 368 | |
9 | 4 | / | |||
BIM-MCM-PSWFs-ML [ | 4 | 3 | 2 | 552 | |
9 | 8 | 4 | |||
BIM-MCM-PSWFs-ML [ | 8 | 7 | 4 | ||
GMM-PSWFs-IM-ML (the proposed method) | 10 | / | / |
1 | AMAKAWA S, ASLAM Z, BUCKWATER J, et al. White paper on RF enabling 6G-opportunities and challenges from technology to spectrum. https://biblio.ugent.be/publication/8704523. |
2 |
ZHANG Z Q, XIAO Y, MA Z, et al 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 2019, 14 (3): 28- 41.
doi: 10.1109/MVT.2019.2921208 |
3 | PREKSHA J, AKHIL G, NEERAJ K A vision towards integrated 6G communication networks: promising technologies, architecture, and use-cases. Physical Communication, 2022, 12 (55): 101917. |
4 | WANG C X, YOU X H, GAO X Q, et al On the road to 6G: visions, requirements, key technologies, and testbeds. IEEE Communications Surveys & Tutorials, 2023, 25 (2): 905- 974. |
5 | PANG J Y, WANG S, TANG Z, et al A new 5G radio evolution towards 5G-advanced. Science China Information Sciences, 2022, 9 (65): 191301. |
6 |
BASAR E, AYGOLU U, PANAYIRCI E, et al Orthogonal frequency division multiplexing with index modulation. IEEE Trans. on Signal Processing, 2013, 61 (22): 5536- 5549.
doi: 10.1109/TSP.2013.2279771 |
7 | ASMORO K, SHIN S Y RIS grouping based index modulation for 6G telecommunications. IEEE Wireless Communications Letters, 2022, 11 (11): 2410- 2414. |
8 | LI S, XIAO L X, ZHANG X F, et al Spatial multiplexing aided OTFS with index modulation. IEEE Trans. on Vehicular Technology, 2023, 72 (6): 8192- 8197. |
9 | JAIN M, MAKKAR R, RAWAL D, et al Dual-mode index modulation based OFDM system over NOMA networks. Physical Communication, 2021, 8 (47): 101395. |
10 |
BUZZI S, ANDREA C D, LI D J, et al MIMO-UFMC transceiver schemes for millimeter-wave wireless communications. IEEE Trans. on Communications, 2019, 67, 3323- 3336.
doi: 10.1109/TCOMM.2019.2896122 |
11 | MICHAILOW N, MATTHE M, GASPAR I S, et al Generalized frequency division multiplexing for 5th generation cellular network. IEEE Trans. on Communications, 2014, 62, 1205- 1218. |
12 | WANG Y, GUO Q, XIANG J H, et al Doubly selective channel estimation and equalization based on ICI/ISI mitigation for OQAM-FBMC systems. Physical Communication, 2023, 8 (59): 102120. |
13 |
WANG H X, LU F P, LIU C H, et al Frequency domain multi-carrier modulation based on prolate spheroidal wave functions. IEEE Access, 2020, 8, 99665- 99680.
doi: 10.1109/ACCESS.2020.2997679 |
14 | LU F P, WANG H X, LIU C H, et al PSWFs frequency domain modulation and demodulation method. Journal of Electronics & Information Technology, 2020, 42, 1888- 1895. |
15 | KEDAR K, NICHOLAS G. Sampling theory approach to prolate spheroidal wavefunctions. Journal of Physics, 2003, 36: 10011−10021. |
16 | ZHEN J Q, WANG Z F DOA estimation method for wideband signals by block sparse reconstruction. Journal of Systems Engineering and Electronics, 2016, 27 (1): 20- 27. |
17 | TONG W, ZHU P Y. 6G: the next horizon: from connected people and things to connected intelligence. Cambridge: Cambridge University Press, 2021. |
18 | MURUGESAN P P K, SIVABALIN V P G, NANJAN S M, et al. Orthogonal modes using prolate spheroidal wave function in holographic communication systems. Proc. of the International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication, 2023. DOI: 10.1109/IConSCEPT57958.2023.10170733. |
19 | WANG H X, LU F P, LIU C H, et al Multi-carrier modulation scheme based on prolate spheroidal wave functions with signal grouping optimization. Scientia Sinica Informationis, 2020, 51 (7): 1168- 1182. |
20 | WANG H X, ZHANG L F, LU F P, et al. Multi-carrier index modulation based on prolate spheroidal wave functions with dual-mode. Journal of Electronics and Information Technology, 2022, 44(2): 694−701. (in Chinese) |
21 | WANG H X, ZHANG L F, LU F P, et al Multi-carrier index modulation based on prolate spheroidal wave functions with better multiple-mode. Journal of Electronics & Information Technology, 2022, 44 (12): 4185- 4193. |
22 | WANG H X, LU F P, LIU C H, et al Multi-carrier modulation scheme based on prolate spheroidal wave functions with generalization index modulation. Scientia Sinica Informationis, 2021, 51 (9): 1524- 1539. |
23 |
SLEPIAN D, POLLAK H O Prolate spheroidal wave functions, fourier analysis, and uncertainty-I. The Bell System Technical Journal, 1961, 40 (1): 43- 46.
doi: 10.1002/j.1538-7305.1961.tb03976.x |
24 | WEN M W, LI Q, BASAR E, et al Generalized multiple-mode OFDM with index modulation. IEEE Trans. on Wireless Communications, 2018, 17 (10): 6531- 6543. |
25 |
IRFAN M, AISSA S Generalization of index-modulation: breaking the conventional limits on spectral and energy efficiencies. IEEE Trans. on Wireless Communications, 2021, 20 (6): 3911- 3924.
doi: 10.1109/TWC.2021.3054391 |
26 | WEN M W, BASAR E, LI Q, et al Multiple-mode orthogonal frequency division multiplexing with index modulation. IEEE Trans. on Communications, 2017, 65 (9): 3892- 3906. |
27 | ZHUANG L, DAI L, LIU S L, et al Optimized scheme for spectrum and energy efficiency of multiple-mode OFDM with index modulation. Systems Engineering and Electronics, 2020, 42 (3): 719- 726. |
[1] | Yiming LI, Liping DU, Yueyun CHEN. A pilot allocation method for multi-cell multi-user massive MIMO system [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 399-407. |
[2] | Mussa Ally DIDA, Hao HUAN, Ran TAO, Teng WANG, Didar URYNBASSAROVA. Constant envelope FrFT OFDM: spectral and energy efficiency analysis [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 467-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||