
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (1): 1-14.doi: 10.23919/JSEE.2023.000167
• ELECTRONICS TECHNOLOGY •
Jiaqi TAN(
), Tianpeng LIU(
), Weidong JIANG(
), Yongxiang LIU(
), Yun CHENG(
)
Received:2022-08-15
Accepted:2023-12-15
Online:2025-02-18
Published:2025-03-18
Contact:
Tianpeng LIU
E-mail:tanjiaqi17@sina.com;everliutianpeng@sina.cn;jwd2232@vip.163.com;lyx_bible@sina.com;moraincy@126.com
About author:Supported by:Jiaqi TAN, Tianpeng LIU, Weidong JIANG, Yongxiang LIU, Yun CHENG. Azimuth-dimensional RCS prediction method based on physical model priors[J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 1-14.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Network module setting parameters"
| Modules stack | Parameters | Value |
| Scattering-center modules stack | Number of scattering-center modules | 4 |
| Shared FC layers | 4 | |
| FC layer size | 512 | |
| Order of fractional polynomials | ||
| Seasonality modules stack | Number of seasonality modules | 2 |
| Shared FC layers | 4 | |
| FC layer size | 256 | |
| Harmonic number | 1 |
Table 2
RMSE comparison of four network prediction results"
| Predicted azimuth/(°) | Network | |||
| Improved N-BEATS | N-BEATS | LSTM | Season N-BEATS | |
| 0.1 | ||||
| 0.2 | ||||
| 0.3 | ||||
| 0.4 | ||||
| 0.5 | ||||
| 0.6 | ||||
| 0.7 | ||||
| 0.8 | ||||
| 0.9 | ||||
| 1.0 | ||||
| 1.1 | ||||
| 1.2 | ||||
| 1.3 | ||||
| 1.4 | ||||
| 1.5 | ||||
| 1.6 | ||||
| 1.7 | ||||
| 1.8 | ||||
| 1.9 | ||||
| 2.0 | ||||
| 2.1 | ||||
| 2.2 | ||||
| 2.3 | ||||
| 2.4 | ||||
| 2.5 | ||||
| 2.6 | ||||
| 2.7 | ||||
| 2.8 | ||||
| 2.9 | ||||
| 3.0 | ||||
Table 3
Correlation coefficients comparison of four network prediction results"
| Predicted azimuth/(°) | Network | |||
| Improved N-BEATS | N-BEATS | LSTM | Season N-BEATS | |
| 0.1 | ||||
| 0.2 | ||||
| 0.3 | ||||
| 0.4 | ||||
| 0.5 | ||||
| 0.6 | ||||
| 0.7 | ||||
| 0.8 | ||||
| 0.9 | ||||
| 1.0 | ||||
| 1.1 | ||||
| 1.2 | ||||
| 1.3 | ||||
| 1.4 | ||||
| 1.5 | ||||
| 1.6 | ||||
| 1.7 | ||||
| 1.8 | ||||
| 1.9 | ||||
| 2.0 | ||||
| 2.1 | ||||
| 2.2 | ||||
| 2.3 | ||||
| 2.4 | ||||
| 2.5 | ||||
| 2.6 | ||||
| 2.7 | ||||
| 2.8 | ||||
| 2.9 | ||||
| 3.0 | ||||
Table 5
RMSE results obtained by the proposed network predicting the other eight cones"
| Predicted azimuth/(°) | Cone | |||||||
| Cone 1 | Cone 2 | Cone 3 | Cone 4 | Cone 5 | Cone 6 | Cone 7 | Cone 8 | |
| 0.1 | ||||||||
| 0.3 | ||||||||
| 0.5 | ||||||||
| 0.7 | ||||||||
| 0.9 | ||||||||
| 1.1 | ||||||||
| 1.3 | ||||||||
| 1.5 | ||||||||
| 1.7 | ||||||||
| 1.9 | ||||||||
| 2.1 | ||||||||
| 2.3 | ||||||||
| 2.5 | ||||||||
| 2.7 | ||||||||
| 2.9 | ||||||||
Table 6
Correlation coefficients results obtained by the proposed network predicting the other eight cones"
| Predicted azimuth/( | Target | |||||||
| Cone 1 | Cone 2 | Cone 3 | Cone 4 | Cone 5 | Cone 6 | Cone 7 | Cone 8 | |
| 0.1 | ||||||||
| 0.3 | ||||||||
| 0.5 | 09705 | |||||||
| 0.7 | ||||||||
| 0.9 | ||||||||
| 1.1 | ||||||||
| 1.3 | ||||||||
| 1.5 | ||||||||
| 1.7 | ||||||||
| 1.9 | ||||||||
| 2.1 | ||||||||
| 2.3 | ||||||||
| 2.5 | ||||||||
| 2.7 | ||||||||
| 2.9 | ||||||||
| 1 | OZDEMIR C. Inverse synthetic aperture radar imaging with MATLAB algorithms. New York: John Wiley & Sons, 2021. |
| 2 | RUAN Y Z. Radar cross section and stealth technology. Beijing: National Defense Industry Press, 1998. (in Chinese) |
| 3 | ZHANG P F. Prediction and control of radar cross section in stealth technology. Xi’an: Xidian University, 2008. (in Chinese) |
| 4 | PIOU J E, CUOMO K M, MAYHAN J T. A state-space technique for ultrawide-bandwidth coherent processing. Lexington: Lincoln Laboratory, Massachusetts Institute of Technology, 1999. |
| 5 | SUWA K, IWAMOTO M. A two-dimensional bandwidth extrapolation technique for polarimetric synthetic aperture radar images. IEEE Trans. on Geoscience & Remote Sensing, 2006, 45(1): 45–54. |
| 6 | WANG J. A study on radar optical region target scattering center extraction and its applications. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) |
| 7 | JACOBS J P, DU PLESSIS W P Efficient modeling of missile RCS magnitude responses by Gaussian processes. IEEE Antennas & Wireless Propagation Letters, 2017, 16, 3228- 3231. |
| 8 | DING L F, GENG F L. Principle of radar. Xi’an: Xidian University Press, 2002. (in Chinese) |
| 9 | QIN T. Study on resource management scheme for cognitive radar. Xi’an: Xidian University, 2016. (in Chinese) |
| 10 | LI S Y, JIN X Y, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. https://arxiv.org/abs/1907.00235. |
| 11 |
LIM B, ARIK S Ö, LOEFF N, et al Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting, 2021, 37 (4): 1748- 1764.
doi: 10.1016/j.ijforecast.2021.03.012 |
| 12 | WU H X, XU J H, WANG J M, et al Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 2021, 34, 22419- 22430. |
| 13 |
SHEN L, WANG Y Z TCCT: tightly-coupled convolutional transformer on time series forecasting. Neurocomputing, 2022, 480, 131- 145.
doi: 10.1016/j.neucom.2022.01.039 |
| 14 | WU N, GREEN B, BEN X, et al. Deep transformer models for time series forecasting: the influenza prevalence case. https://arxiv.org/abs/2001.08317. |
| 15 | LAI G K, CHANG W C, YANG Y M, et al. Modeling long-and short-term temporal patterns with deep neural networks. Proc. of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 95–104. |
| 16 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. https://arxiv.org/abs/1803.01271. |
| 17 |
SALINAS D, FLUNKERT V, GASTHAUS J, et al DeepAR: probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2020, 36 (3): 1181- 1191.
doi: 10.1016/j.ijforecast.2019.07.001 |
| 18 |
SMYL S A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 2020, 36 (1): 75- 85.
doi: 10.1016/j.ijforecast.2019.03.017 |
| 19 |
ZHOU H Y, ZHANG S H, PENG J Q, et al Informer: beyond efficient transformer for long sequence time-series forecasting. Proc. of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 11106- 11115.
doi: 10.1609/aaai.v35i12.17325 |
| 20 | ORESHKIN B N, CARPOV D, CHAPADOS N, et al. Meta-learning framework with applications to zero-shot time-series forecasting. http://arxiv.org/abs/2012.07436v1. |
| 21 | BORISOV V, LEEMANN T, SEßLER K, et al. Deep neural networks and tabular data: a survey. https://arxiv.org/abs/2110.01889. |
| 22 | ZHENG X Q, WANG J P, PENG Z A, et al. Using long short term memory for radar cross section. Proc. of the IEEE 3rd International Conference on Signal and Image Processing, 2018: 504−509. |
| 23 | ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-BEATS: neural basis expansion analysis for interpretable time series forecasting. https://arxiv.org/abs/1905.10437. |
| 24 | ORESHKIN B N, DUDEK G, PEKA P, et al N-BEATS neural network for mid-term electricity load forecasting. Applied Energy, 2021, 293 (1): 116918. |
| 25 | ZENG S, GRAF F, HOFER C, et al Topological attention for time series forecasting. Advances in Neural Information Processing Systems, 2021, 34, 24871- 24882. |
| 26 | LI Y J. Research on radar echo reconstruction technology of aerospace target under sparse conditions. Changsha: National University of Defense Technology, 2021. (in Chinese) |
| 27 | LI L Simulation of RCS fluctuation characteristics of ballistic missiles. Science and Technology Wind, 2013, 22, 97- 98. |
| 28 | XU Z M. Radar target characteristics and MATLAB simulation. Beijing: Publishing House of Electronics Industry, 2021. (in Chinese) |
| 29 | XU Z Q J. Frequency principle in deep learning with general loss functions and its potential application. Machine Learning. https://arxiv.org/abs/1811.10146. |
| 30 | XU Z Q J, ZHANG Y Y, XIAO Y Y. Training behavior of deep neural network in frequency domain. https://arxiv.org/abs/1807.01251. |
| 31 | ZHANG Y Y, LUO T, MA Z, et al A linear frequency principle model to understand the absence of overfitting in neural networks. Chinese Physics Letters, 2021, 38 (3): 161- 166. |
| [1] | Yuliang Qin, Bin Deng, Zonghui Huang, and Wuge Su. Hybrid micromotion-scattering center model for synthetic aperture radar micromotion target imaging [J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 931-937. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||