Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (3): 597-608.doi: 10.23919/JSEE.2025.000043
• ELECTRONICS TECHNOLOGY •
Penglei RU1,2(), Mengwei LIU1,*(
), Baifan HU1,2(
), Wen WANG1(
)
Received:
2023-04-13
Online:
2025-06-18
Published:
2025-07-10
Contact:
Mengwei LIU
E-mail:rupenglei@mail.ioa.ac.cn;liumw@mail.ioa.ac.cn;hubaifan@mail.ioa.ac.cn;wangwenwq@mail.ioa.ac.cn
About author:
Penglei RU, Mengwei LIU, Baifan HU, Wen WANG. Phase error analysis and optimization for chirp transform spectrometer[J]. Journal of Systems Engineering and Electronics, 2025, 36(3): 597-608.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | GAIDIS M C. Space-based applications of far-infrared systems. Proc. of 8th Conference on Terahertz Electronics, 2000: 125–128. |
2 |
PETER H, SIEGEL Terahertz technology. IEEE Trans. on Microwave Theory and Techniques, 2002, 50 (3): 910- 928.
doi: 10.1109/22.989974 |
3 |
HORN J, SIEBERTZ O, SCHMULLING F, et al A 4×1GHz array acousto-optical spectrometer. Experimental Astronomy, 1999, 9 (1): 17- 38.
doi: 10.1023/A:1008093310165 |
4 | SIEBERTZ O, SCHMÜLLING F, GAL C, et al. The wide-band spectrometer (WBS) for the HIFI instrument of herschel. Proc. of International Symposium on Space Terahertz Technology, 2007, 135(1): 1−4. |
5 | OZEKI H, KASAI Y, OCHIAI S, et al. Submillimeter-wave spectroscopic performance of JEM/SMILES. Proc. of the SPIE, 2000: 4152. |
6 | WANG J S An experimental project of acousto-optical spectrograph on solar meter-wave radio emission. Astronomical Research & Technology, 1979, (4): 21- 27. |
7 | SHI S B, DONG L, GAO G W, et al Scientific objectives and technical design of a meter-wave spectrometer for solar radio observation. Astronomical Research & Techonolgy-Publications of National Astronomical Observatories of China, 2011, 8 (3): 229- 235. |
8 | KLEIN B, HOCHGURTEL S, KRAMER I, et al High-resolution wide-band fast Fourier transform spectrometers. Astronomy and Astrophysics, 2012, 542 (2): 1075- 1082. |
9 |
STANKO S, KLEIN B, KERP J A field programmable gate array spectrometer for radio astronomy. Astronomy and Astrophysics, 2005, 436 (1): 391- 395.
doi: 10.1051/0004-6361:20042227 |
10 | KLEIN B, PHILIPP S D, GUSTEN R. et al. A new generation of spectrometers for radio astronomy: fast Fourier transform spectrometer. Proc. of SPIE -the International Society for Optical Engineering, 2006. DOI: 10.1117/12.670831. |
11 |
KIM Y, ZHANG Y, RECK T J, et al A 183-GHz InP/CMOS-Hybrid heterodyne-spectrometer for spaceborne atmospheric remote sensing. IEEE Trans. on Terahertz Science and Technology, 2019, 9 (3): 313- 334.
doi: 10.1109/TTHZ.2019.2910988 |
12 |
TANG A, PINO M A D, KIM Y, et al Sub-orbital flight demonstration of a 183/540–600 GHz hybrid CMOS-InP and CMOS-Schottky-MEMS limb-sounder. IEEE Journal of Microwaves, 2021, 1 (2): 560- 573.
doi: 10.1109/JMW.2021.3060622 |
13 |
TANG A R, KIM Y Y, ZHANG Y, et al CMOS system-on-chip spectrometer processors for spaceborne microwave-to-THz earth and planetary science and radioastronomy. IEEE Journal of Microwaves, 2022, 2 (4): 599- 613.
doi: 10.1109/JMW.2022.3201399 |
14 | ZHAO Q, TONG L, GAO B Spectral analysis of stationary signals based on two simplified arrangements of chirp transform spectrometer. Electronics, 2021, 10 (1): 65. |
15 |
ZHAO Q, TONG L, GAO B Advanced chirp transform spectrometer with novel digital pulse compression method for spectrum detection. Applied Sciences, 2021, 11 (3): 960.
doi: 10.3390/app11030960 |
16 | GONG J J, ZHANG Y X, ZHOU X W, et al. Wide bandwidth SAW chirp filters with improved magnitude response. Proc. of the IEEE Ultrasonics Symposium, 2006: 1895–1898. |
17 | MARIJA H Surface acoustic wave devices in communications. Scientific Technical Review, 2008, 58 (2): 44- 50. |
18 |
HARTOGH P, HARTMANN G A high-resolution chirp transform spectrometer for microwave measurements. Measurement Science and Technology, 1990, 1, 592- 595.
doi: 10.1088/0957-0233/1/7/008 |
19 | OSTERSCHEK K, HARTOGH P A fast, high resolution chirp transform spectrometer for atmospheric remote sensing from space. Proc. of the IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, 1990, 2, 979- 982. |
20 |
GULKIS S, FRERKING M, CROVISIER J, et al MIRO: microwave instrument for rosetta orbiter. Space Science Reviews, 2007, 128 (1/4): 561- 597.
doi: 10.1007/s11214-006-9032-y |
21 |
KOTIRANTA M, JACOB K, KIM H, et al Optical design and analysis of the submillimeter-wave instrument on JUICE. IEEE Trans. on Terahertz Science and Technology, 2018, 8 (6): 588- 595.
doi: 10.1109/TTHZ.2018.2866116 |
22 | FAN J T, MA G Y, WAN Q T, et al Application of chirp signal in astronomical observation. Astronomical Research & Technology, 2017, 14 (4): 443- 451. |
23 | HARTOGH P. High-resolution chirp transform spectrometer for middle atmospheric microwave sounding. Proc. of the SPIE, 1997: 115–124. |
24 |
SEELE C, HARTOGH P Water vapor of the polar middle atmosphere: annual variation and summer mesosphere conditions as observed by ground-based microwave spectroscopy. Geophysical Research Letters, 1999, 26 (11): 1517- 1520.
doi: 10.1029/1999GL900315 |
25 | XU Z C The new millimeter wave radio telescope built by Purple Mountain Observatory. Chinese Journal of Radio Science, 1990, 6 (1): 98- 104. |
26 | ZHENG X W, JIA E K, ZHOU J J The first observation of water maser at Urumchi astronomical observatory. Science in China (Series A), 2001, 31 (3): 267- 271. |
27 | HOFSTADTER M D, HARTOGH J P, MCMULLIN J P, et al A search for variability in the HCCN to H2CO ratio in comet hale-bopp. Earth Moon & Planets, 1997, 78 (1): 53- 61. |
28 | HARTOGH P. Present and future chirp transform spectrometers for microwave remote sensing. International Society for Optics and Photonics, 1997, 3221: 328–339. |
29 |
DARLINGTON S Demodulation of wideband, low-power FM signals. Bell System Technical Journal, 1964, 43 (1): 339- 374.
doi: 10.1002/j.1538-7305.1964.tb04071.x |
30 |
VILLANUEVA G L, HARTOGH P, REINDL L M A digital dispersive matching network for SAW devices in chirp transform spectrometers. IEEE Trans. on Microwave Theory and Techniques, 2006, 54 (4): 1415- 1424.
doi: 10.1109/TMTT.2006.871244 |
31 |
RU P L, LIU M W, GONG J J, et al A spectrum analyzer system with wide bandwidth and high frequency resolution based on chirp transform. Microwave and Optical Technology Letters, 2022, 64 (3): 458- 463.
doi: 10.1002/mop.33130 |
32 | CHENG T, LI L. Sequential linear filtering with non-linear position and Doppler measurements for target tracking. IET Radar, Sonar & Navigation, 2022, 16(4): 646−658. |
33 | YANG Y, HOU Q Y, YANG L, et al Phase error compensation based on Tree-Net using deep learning. Optics and Lasers in Engineering, 2021, 143 (1): 106- 628. |
34 |
HO Y H, YAO C Y A low-jitter fast-locked all-digital phase-locked loop with phase-frequency-error compensation. IEEE Trans. on Very Large Scale Integration Systems, 2016, 24 (5): 1984- 1992.
doi: 10.1109/TVLSI.2015.2470545 |
35 | YANG H, SUMANTYO J T S, AN J H, et al. Phase error compensation method using polynomial model for a direct digital synthesizer based chirp signal generator. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 786–789. |
36 |
SAEEDI J, FAEZ K Synthetic aperture radar imaging using nonlinear frequency modulation signal. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (1): 99- 110.
doi: 10.1109/TAES.2015.140310 |
37 |
LIN J K, HE Y Z QFT control based on zero phase error compensation for flight simulator. Journal of Systems Engineering and Electronics, 2007, 18 (1): 125- 131.
doi: 10.1016/S1004-4132(07)60062-0 |
38 | PAGANINI L. Power spectral density accuracy in chirp transform spectrometers. Freiburg: Albert Ludwing University of Freiburg, 2008. |
39 |
KLEIPOOL Q L, WHYBORN N D, HELMICH F P, et al Error analysis of a heterodyne submillimeter sounder for the detection of stratospheric trace gases. Applied Optics, 2000, 39 (30): 5518- 30.
doi: 10.1364/AO.39.005518 |
40 |
VILLANUEVA G, HARTOGH P The high resolution chirp transform spectrometer for the sofia-great instrument. Experimental Astronomy, 2004, 18, 77- 91.
doi: 10.1007/s10686-005-9004-3 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||