Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (5): 10891100.doi: 10.21629/JSEE.2018.05.19
• Reliability • Previous Articles Next Articles
Xiaolin SHI^{1,}*(), Pu LU^{2}(), Yimin SHI^{2}()
Received:
20170617
Online:
20181026
Published:
20181114
Contact:
Xiaolin SHI
Email:linda20016@163.com;1464293801@163.com;ymshi@nwpu.edu.cn
About author:
SHI Xiaolin was born in 1980. She received her B.S., M.S., and Ph.D. degrees in electrical engineering from Northwestern Polytechnical University. She is currently working as an associate professor of School of Electronics Engineering at Xi’an University of Posts & Telecommunications. Her research interests include system reliability analysis and statistical inference for masked data. Email: Supported by:
Xiaolin SHI, Pu LU, Yimin SHI. Inference and optimal design on stepstress partially accelerated life test for hybrid system with masked data[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 10891100.
Table 1
AMLE of parameter and reliability index and MSE for different $\mathit{\boldsymbol{(n, R)}}$ and CS $\mathit{\boldsymbol{(p = 0.3)}}$ "
n  CS  $T_0 = 0.6, p = 0.3$  
$\widehat {\alpha }$ (MSE)  $\widehat {\beta }$ (MSE)  $\widehat {\lambda }$ (MSE)  $\widehat {b}$ (MSE)  $\widehat {R}_S $ (MSE)  $\widehat {h}_S $ (MSE)  
(40, 20)  1  0.342 3  0.733 7  0.480 5  2.357 2  0.838 0  0.599 3 
(0.044 8)  (0.080 1)  (0.569 3)  (1.972 7)  (0.007 2)  (0.059 2)  
2  0.259 7  0.691 5  0.397 6  1.782 3  0.909 4  0.457 2  
(0.035 1)  (0.219 0)  (1.904 3)  (1.752 6)  (0.003 4)  (0.067 2)  
3  0.268 8  0.718 8  0.574 5  2.202 1  0.825 8  0.403 9  
(0.028 9)  (0.086 8)  (1.326 3)  (1.802 2)  (0.002 6)  (0.041 1)  
(40, 25)  1  0.312 1  0.835 9  0.485 4  1.977 0  0.883 9  0.490 8 
(0.019 4)  (0.070 1)  (1.021 4)  (1.650 6)  (0.006 8)  (0.023 7)  
2  0.264 5  0.698 3  0.414 3  1.839 8  0.900 9  0.487 4  
(0.023 9)  (0.195 1)  (1.846 0)  (1.500 2)  (0.003 1)  (0.066 9)  
3  0.288 2  0.720 7  0.557 4  2.211 8  0.824 0  0.424 9  
(0.023 1)  (0.076 9)  (1.087 4)  (1.394 9)  (0.002 6)  (0.025 0)  
(50, 35)  1  0.296 1  0.837 1  0.456 2  2.001 9  0.881 8  0.450 4 
(0.012 6)  (0.028 6)  (0.516 5)  (1.411 1)  (0.002 6)  (0.017 9)  
2  0.261 9  0.754 7  0.511 6  1.861 9  0.895 8  0.484 5  
(0.014 2)  (0.049 3)  (1.128 4)  (1.211 6)  (0.001 5)  (0.052 3)  
3  0.285 2  0.723 1  0.557 6  1.908 1  0.855 1  0.418 6  
(0.014 6)  (0.030 5)  (0.572 0)  (1.303 4)  (0.002 3)  (0.023 5) 
Table 2
AMLE of parameter and reliability index and MSE for different $\mathit{\boldsymbol{(n, R)}}$ and CS $\mathit{\boldsymbol{(p = 0.8)}}$ "
n  CS  $T_0 = 0.6, p = 0.3$  
$\widehat {\alpha }$ (MSE)  $\widehat {\beta }$ (MSE)  $\widehat {\lambda }$ (MSE)  $\widehat {b}$ (MSE)  $\widehat {R}_S $ (MSE)  $\widehat {h}_S $ (MSE)  
(40, 20)  1  0.444 6  0.875 2  0.450 1  2.162 1  0.892 4  0.394 0 
(0.082 0)  (0.084 1)  (1.043 2)  (2.571 3)  (0.008 1)  (0.033 2)  
2  0.239 7  0.745 6  0.572 0  1.849 7  0.912 7  0.308 7  
(0.038 2)  (0.241 0)  (1.921 6)  (1.827 6)  (0.003 8)  (0.066 7)  
3  0.269 8  0.759 6  0.588 7  2.227 5  0.845 6  0.396 1  
(0.032 4)  (0.087 1)  (1.674 6)  (1.857 8)  (0.002 8)  (0.051 4)  
(40, 25)  1  0.283 7  0.848 1  0.512 1  2.039 5  0.895 0  0.400 4 
(0.029 0)  (0.072 2)  (1.019 2)  (2.145 4)  (0.001 7)  (0.030 9)  
2  0.248 0  0.753 3  0.500 3  1.883 9  0.909 6  0.323 0  
(0.024 2)  (0.224 5)  (1.903 9)  (1.792 1)  (0.003 4)  (0.051 1)  
3  0.226 0  0.755 9  0.541 1  2.076 7  0.869 3  0.414 6  
(0.030 8)  (0.082 0)  (1.601 8)  (2.542 2)  (0.002 7)  (0.045 1)  
(50, 35)  1  0.266 5  0.856 8  0.454 1  1.980 0  0.895 0  0.414 2 
(0.012 7)  (0.030 1)  (0.589 4)  (1.515 5)  (0.003 6)  (0.023 2)  
2  0.241 5  0.832 9  0.542 6  1.970 6  0.901 6  0.369 8  
(0.022 4)  (0.051 2)  (1.280 9)  (1.296 2)  (0.001 9)  (0.028 9)  
3  0.263 9  0.762 0  0.611 2  0.902 5  0.866 7  0.409 5  
(0.015 7)  (0.037 5)  (0.785 3)  (2.298 6)  (0.003 4)  (0.038 6) 
Table 3
Average value of 95% CIs of parameters and corresponding CIL, CP $\mathit{\boldsymbol{(T_0 = 1.2, (n, R) = (50, 5))}}$ "
MP  CS  Parameter  ACIs\CIL CP  Bootp CIs \ CIL CP  Boott CIs \ CIL CP 
p=0.3  1  α  (0.112 1, 0.556 3)\0.444 1 95.0%  (0.111 0, 0.518 8)\0.407 7 95.6%  (0.191 4, 0.456 4)\0.264 9 95.4% 
β  (0.250 9, 1.151 8)\0.900 8 95.3%  (0.610 4, 0.975 3)\0.364 9 95.7%  (0.760 9, 1.080 2)\0.319 2 95.4%  
λ  ( – 0.282 5, 1.072 6)\1.355 1 95.0%  (0.145 9, 0.864 5)\0.718 6 96.4%  ( – 0.037 1, 0.819 1)\0.856 2 96.1%  
b  ( – 0.308 7, 2.432 3)\2.741 8 95.0%  (1.183 1, 2.619 6)\1.436 5 95.6%  (1.371 0, 2.472 3)\1.101 3 95%  
2  α  (0.051 5, 0.525 9)\0.474 3 94.9%  (0.106 4, 0.548 9)\0.442 5 95.0%  (0.254 5, 0.408 4)\0.153 8 95.0%  
β  (0.432 2, 0.926 2)\0.494 0 94.7%  (0.564 2, 0.945 6)\0.381 4 95.5%  (0.695 2, 0.962 0)\0.266 8 95.3%  
λ  ( – 0.044 6, 1.201 3)\1.245 9 94.8%  (0.114 1, 0.854 9)\0.740 8 95.4%  (0.250 2, 0.830 7)\0.580 5 95.0%  
b  (0.341 9, 2.793 7)\2.451 7 94.7%  (1.788 9, 2.475 3)\0.686 3 95.5%  (1.757 8, 2.399 2)\0.641 4 95.3%  
3  α  (0.222 6, 0.570 4)\0.347 7 94.5%  (0.125 6, 0.547 8)\0.422 2 95.0%  (0.282 5, 0.416 4)\0.133 9 94.9%  
β  ( – 0.286 8, 1.722 1)\2.009 1 94.5%  (0.611 8, 0.985 9)\0.374 1 95.2%  (0.511 3, 0.891 6)\0.380 2 95.1%  
λ  ( – 0.684 6, 1.798 4)\2.483 0 94.3%  (0.270 4, 0.849 1)\0.578 6 95.2%  (0.382 8, 0.636 5)\0.253 6 95.1%  
b  (1.225 9, 2.720 5)\1.494 6 94.0%  (1.458 6, 2.275 7)\0.817 1 95.5%  (1.602 1, 2.349 7)\0.747 6 95.2%  
p=0.8  1  α  ( – 0.006 5, 0.857 7)\0.864 2 93.8%  (0.143 9, 0.639 9)\0.495 9 94.1%  (0.210 1, 0.357 1)\0.146 9 93.9% 
β  (0.072 2, 2.713 6)\2.641 3 94.2%  (0.552 3, 1.065 1)\0.512 7 94.3%  (0.600 4, 0.940 6)\0.340 2 93.7%  
λ  ( – 0.310 6, 1.362 4)\1.673 0 93.6%  ( – 0.009 9, 1.648 7)\1.658 6 96.1 %  ( – 0.468 3, 0.647 9)\1.116 3 94.1%  
b  (0.302 1, 3.282 3)\2.980 2 92.2%  (1.380 4, 3.029 4)\1.648 9 92.7%  (1.561 5, 3.007 3)\1.445 8 92.3%  
2  α  ( – 0.000 7, 0.566 1)\0.566 8 92.2%  (0.072 4, 0.606 1)\0.533 7 93.4%  (0.175 4, 0.364 7)\0.189 2 93.2%  
β  ( – 0.594 8, 1.400 8)\1.995 6 91.8%  (0.712 7, 1.777 3)\1.064 6 94.7%  (0.710 2, 1.015 9)\0.305 7 94.6%  
λ  ( – 0.085 7, 1.765 1)\1.850 8 92.7%  (0.075 9, 1.588 5)\1.512 6 93.9%  (0.173 3, 0.779 1)\0.605 8 92.8%  
b  ( – 0.301 2, 2.442 9)\2.744 1 92.6%  (1.092 5, 2.468 2)\1.375 7 92.8%  (1.616 3, 3.088 5)\1.472 2 92.6%  
3  α  (0.222 9, 0.594 9)\0.372 0 93.3%  (0.119 8, 0.601 1)\0.481 2 93.9%  (0.209 4, 0.454 8)\0.245 3 93.4%  
β  ( – 0.582 7, 1.478 9)\2.061 6 93.1%  (0.388 1, 0.925 9)\0.537 8 94.7%  (0.505 6, 0.988 4)\0.482 9 94.1%  
λ  ( – 0.585 6, 2.292 3)\2.877 9 93.7%  (0.127 3, 1.153 6)\1.026 3 94.6%  (0.301 1, 0.908 0)\0.606 8 94.3%  
b  (0.937 1, 2.871 0)\1.933 9 93.1%  (1.208 2, 2.550 0)\1.341 7 94.2%  (1.158 7, 2.405 6)\1.246 8 94.0% 
Table 4
Optimal time of changing stress levels under the two optimalcriteria"
CS  $p = 0.3$  $p = 0.8$  
$\tau _D^\ast $  $\tau _A^\ast $  $\tau _D^\ast $  $\tau _A^\ast $  
T_{0} = 0.6  (40, 20)  1  0.315 1  0.300 6  0.382 5  0.306 1  
2  0.373 3  0.293 1  0.340 1  0.362 0  
3  0.385 5  0.308 6  0.381 8  0.299 3  
(40, 25)  1  0.349 4  0.302 9  0.393 9  0.308 1  
2  0.374 2  0.313 6  0.369 8  0.363 5  
3  0.393 8  0.312 7  0.382 7  0.300 8  
(50, 35)  1  0.388 2  0.311 6  0.411 5  0.318 3  
2  0.392 3  0.357 4  0.377 6  0.370 3  
3  0.391 3  0.317 0  0.383 9  0.304 9  
T_{0} = 1.2  (40, 20)  1  0.305 9  0.355 0  0.337 7  0.342 6  
2  0.325 8  0.342 3  0.338 1  0.375 4  
3  0.306 3  0.342 5  0.353 9  0.330 2  
(40, 25)  1  0.316 3  0.356 5  0.339 8  0.345 9  
2  0.366 9  0.345 8  0.350 9  0.376 1  
3  0.311 0  0.344 8  0.372 8  0.332 7  
(50, 35)  1  0.302 9  0.362 6  0.344 6  0.351 8  
2  0.375 1  0.358 3  0.365 3  0.377 1  
3  0.334 8  0.347 4  0.379 7  0.332 5 
1 
USHER J, HODGSON T. Maximum likelihood analysis of component reliability using masked system lifetest data. IEEE Trans. on Reliability, 1988, 37 (5): 550 555.
doi: 10.1109/24.9880 
2 
SARHAN A, GUESS F, USHER J. Estimators for reliability measures in geometric distribution model using dependent masked system life test data. IEEE Trans. on Reliability, 2007, 56 (2): 312 320.
doi: 10.1109/TR.2007.895300 
3  BASU S, SEN A, BANERJEE M. Bayesian analysis of competing risks with partially masked cause of failure. Journal of the Royal Statistical Society, 2003, 52 (1): 77 93. 
4  SARHAN A M, ELBASSIOUNY A H. Estimation of components reliability in a parallel system using masked system life data. Applied Mathematics & Computation, 2003, 138 (1): 61 75. 
5  FAN T H, WANG W L. Accelerated life tests for independent Weibull series systems with masked TypeI censored data. IEEE Trans. on Reliability, 2011, 60 (30): 557 569. 
6 
XU A, BASU S, TANG Y. A full Bayesian approach for masked data in stepstress accelerated life testing. IEEE Trans. on Reliability, 2014, 63 (3): 798 806.
doi: 10.1109/TR.2014.2315940 
7 
FAN T H, HSU T M. Accelerated life tests of a series system with masked interval data under exponential lifetime distributions. IEEE Trans. on Reliability, 2012, 61 (3): 798 808.
doi: 10.1109/TR.2012.2209259 
8  FAN T H, HSU T M, PENG K J. Bayesian inference of a series system on Weibull stepstress accelerated life tests with dependent masking. Quality Technology & Quantitative Management, 2013, 10 (3): 291 303. 
9  CAI J, SHI Y, LIU B, et al. Bayesian analysis for BurrXII masked system in stepstress partially accelerated life test under TypeI progressive hybrid censoring. International Journal of Reliability Quality & Safety Engineering, 2015, 22 (4): 524 526. 
10 
LIU B, SHI Y, ZHANG F, et al. Reliability nonparametric Bayesian estimation for the masked data of parallel systems in stepstress accelerated life tests. Journal of Computational and Applied Mathematics, 2017, 311, 375 386.
doi: 10.1016/j.cam.2016.07.029 
11  ZHANG Y, YUAN Y, ZHANG Q. Analysis on the reliability of the dual electric firing blasting network and application of the network in chamber blasting. Mining Research and Development, 2001, 21 (5): 41 43. 
12 
WANG R H, SHA N J, GU B Q, et al. Parameter inference in a hybrid system with masked data. IEEE Trans. on Reliability, 2015, 64 (2): 636 644.
doi: 10.1109/TR.2015.2412537 
13  SHA N, WANG R, HU P, et al. Statistical inference in dependent component hybrid systems with masked data. Advances in Statistics, 2015, 2015, 525136. 
14 
LAI C, XIE M, MURTHY D. A modified Weibull distribution. IEEE Trans. on Reliability, 2003, 52 (1): 33 37.
doi: 10.1109/TR.2002.805788 
15  SOLIMAN A AHMED H, NASER A, et al. Modified Weibull model: a Bayes study using MCMC approach based on progressive censoring data. Reliability Engineering & System Safety, 2012, 100 (6): 48 57. 
16  NELSON W. Accelerated life testing: statistical models, data analysis and test plans. New York: John Wiley and Sons, 1990. 
17  ISMAIL A, SARHAN A. Optimal design of stepstress life test with progressively TypeII censored exponential data. Proc. of the International Mathematical Forum, 2009, 4 (40): 1963 1976. 
18 
ABDELFATTAH A M, HASSAN A S, NASSR S G. Estimation in stepstress partially accelerated life tests for the Burr TypeXII distribution using TypeI censoring. Statistical Methodology, 2008, 5 (6): 502 514.
doi: 10.1016/j.stamet.2007.12.001 
19  ABDELHAMID A, ALHUSSAINI E. Inference and optimal design based on steppartially accelerated life tests for the generalized Pareto distribution under progressive TypeI censoring. Communication in StatisticsSimulation and Computation, 2014, 44 (7): 1750 1769. 
20  ISMAIL A. Inference in the generalized exponential distribution under partially accelerated tests with progressive TypeII censoring. Theoretical & Applied Fracture Mechanics, 2012, 59 (59): 49 56. 
21  ABDELGHANI M. The estimation problem of the loglogistic parameters in step partially accelerated life tests using TypeI censored data. The National Review of Social Sciences, 2004, 41 (2): 1 19. 
22  ISMAIL A. Inference for a stepstress partially accelerated life test model with an adaptive TypeII progressively hybrid censored data from Weibull distribution. Journal of Computational and Applied Mathematics, 2014, 260 (11): 533 542. 
23 
ABDELHAMID A, ALHUSSAINI E. Inference and optimal design based on step partially accelerated life tests for the generalized pareto distribution under progressive TypeI censoring. Communications in StatisticsSimulation and Computation, 2015, 44 (7): 1750 1769.
doi: 10.1080/03610918.2013.826363 
24  KUNDU D, JOARDER A. Analysis of TypeII progressively hybrid censored data. Computational Statistics & Data Analysis, 2006, 50 (10): 2509 2528. 
25  CHILDS A, CHANDRASEKAR B, BALAKRISHNAN N. Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes. VON T A F, NLIKULIN M, LIMNIOS N, et al., ed. Statistical models and methods for biomedical and technical systems, Boston, MA: Birkhäuser, 2008, 319330. 
26  TOMER S, GUPTA V, KUMAR J. Reliability estimation for Burr TypeXII distribution under TypeI progressive hybrid censoring scheme. Mathematics in Engineering, Science & Aerospace, 2015, 2 (6): 123 134. 
27  TIAN Y, ZHU Q, TIAN M. Estimation for mixed exponential distributions under TypeII progressively hybrid censored samples. Computational Statistics & Data Analysis, 2015, 89, 85 96. 
28 
PING S, NG H, FENG S. Exact likelihood inference for the twoparameter exponential distribution under TypeII progressively hybrid censoring. Metrika, 2015, 78 (6): 747 770.
doi: 10.1007/s0018401405255 
29  SUN T, SHI Y, WEI W. Reliability analysis for BS components under progressive hybrid TypeI censoring test. Journal of Systems Engineering and Electronics, 2014, 36 (11): 2326 2332. 
30 
CAI J, SHI Y, YUE H. Accelerated life tests for lognormal series system with dependent masked data under TypeI progressive hybrid censoring. Communications in Statistics Simulation and Computation, 2017, 46 (2): 1628 1646.
doi: 10.1080/03610918.2015.1045078 
31 
DEGROOT M, GOEL P. Bayesian estimation and optimal designs in partially accelerated life testing. Naval Research Logistics Quarterly, 1979, 26 (2): 223 235.
doi: 10.1002/nav.3800260204 
32  EFRON B. The Jackknife, the Bootstrap and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics, 1982. 
33 
HALL P. Theoretical comparison of bootstrap confidence intervals. Annals of Statistics, 1988, 16 (3): 927 953.
doi: 10.1214/aos/1176350933 
34  BALAKRISHNAN N, AGGARWALA R. Progressive censoring: theory, methods, and applications. Boston, MA: Birkhäuser, 2000. 
[1]  Shunyi Zhao and Fei Liu. Bayesian estimation for nonlinear stochastic hybrid systems with state dependent transitions [J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 242249. 
[2]  He You, Xiong Wei & Ma Qiang. Composite filtering with feedback information [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 5456. 
Viewed  
Full text 


Abstract 

